上一节我们分析了Producer的核心组件,我们得到了一张关键的组件图。你还记得么?
简单概括下上面的图就是:
创建了Metadata组件,内部通过Cluster维护元数据
初始化了发送消息的内存缓冲器RecordAccumulator
创建了NetworkClient,内部最重要的是创建了NIO的Selector组件
启动了一个Sender线程,Sender引用了上面的所有组件,开始执行run方法。
图的最下方可以看到,上一节截止到了run方法的执行,这一节我们首先会看看run方法核心脉络做了什么。接着分析下Producer第一个核心流程:元数据拉取的源码原理。
让我们开始吧!
这一节我们就继续分析下,sender的run方法开始执行会做什么。
public void run() { log.debug("Starting Kafka producer I/O thread."); // main loop, runs until close is called while (running) { try { run(time.milliseconds()); } catch (Exception e) { log.error("Uncaught error in kafka producer I/O thread: ", e); } } log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records."); // okay we stopped accepting requests but there may still be // requests in the accumulator or waiting for acknowledgment, // wait until these are completed. while (!forceClose && (this.accumulator.hasUnsent() || this.client.inFlightRequestCount() > 0)) { try { run(time.milliseconds()); } catch (Exception e) { log.error("Uncaught error in kafka producer I/O thread: ", e); } } if (forceClose) { // We need to fail all the incomplete batches and wake up the threads waiting on // the futures. this.accumulator.abortIncompleteBatches(); } try { this.client.close(); } catch (Exception e) { log.error("Failed to close network client", e); } log.debug("Shutdown of Kafka producer I/O thread has completed."); }
这个run方法的核心脉络很简单。主要就是2个while循环+线程的close,而2个while循环,他们都调用了run(long time)的这个方法。
通过注释你可以看到,第二个while是处理特殊情况的,当第一个while退出后,还有未发送的请求,需要第二个while循环处理完成,才会关闭线程。
整体脉络如下图所示:
接着其实就该看下run方法主要在干什么了?
/** * Run a single iteration of sending * * @param now * The current POSIX time in milliseconds */ void run(long now) { Cluster cluster = metadata.fetch(); // get the list of partitions with data ready to send RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now); // if there are any partitions whose leaders are not known yet, force metadata update if (result.unknownLeadersExist) this.metadata.requestUpdate(); // remove any nodes we aren't ready to send to Iterator<Node> iter = result.readyNodes.iterator(); long notReadyTimeout = Long.MAX_VALUE; while (iter.hasNext()) { Node node = iter.next(); if (!this.client.ready(node, now)) { iter.remove(); notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now)); } } // create produce requests Map<Integer, List<RecordBatch>> batches = this.accumulator.drain(cluster, result.readyNodes, this.maxRequestSize, now); if (guaranteeMessageOrder) { // Mute all the partitions drained for (List<RecordBatch> batchList : batches.values()) { for (RecordBatch batch : batchList) this.accumulator.mutePartition(batch.topicPartition); } } List<RecordBatch> expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, now); // update sensors for (RecordBatch expiredBatch : expiredBatches) this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount); sensors.updateProduceRequestMetrics(batches); List<ClientRequest> requests = createProduceRequests(batches, now); // If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately // loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data // that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes // with sendable data that aren't ready to send since they would cause busy looping. long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout); if (result.readyNodes.size() > 0) { log.trace("Nodes with data ready to send: {}", result.readyNodes); log.trace("Created {} produce requests: {}", requests.size(), requests); pollTimeout = 0; } for (ClientRequest request : requests) client.send(request, now); // if some partitions are already ready to be sent, the select time would be 0; // otherwise if some partition already has some data accumulated but not ready yet, // the select time will be the time difference between now and its linger expiry time; // otherwise the select time will be the time difference between now and the metadata expiry time; this.client.poll(pollTimeout, now); }
上面的代码,你如果第一次看,你肯定会觉得,这个脉络非常不清晰,不知道重点在哪里。不过还好有些注释,你能大体猜到他在干嘛。
accumulator的ready,networkclient的ready、networkclient的send、networkclient的poll
这些好像是在准备内存区域、准备网络连接的node节点、发送数据、拉取响应结果的意思。
可是如果你猜不到,该怎么办呢?
这时候就可以祭出debug这个杀器了。由于是producer,我们可以在Hellowolrd的这个客户端打断点,一步一步看下。
当你对run方法一步一步打了断点之后你会发现:
accumulator的ready,networkclient的ready、networkclient的send 这些的逻辑几乎都没有执行,全部都是初始化空对象,或者方法内部直接return。
直接一路执行到了client.poll方法。如下图所示:
那么,你可以得出一个结论,while第一次循环这个run方法的核心逻辑,其实只有一句话:
client.poll(pollTimeout, now)
整体脉络如下所示:
看来接下来,这个NetworkClient的poll方法,就是关键中的关键了:
/** * Do actual reads and writes to sockets. * 对套接字进行实际读取和写入 * * @param timeout The maximum amount of time to wait (in ms) for responses if there are none immediately, * must be non-negative. The actual timeout will be the minimum of timeout, request timeout and * metadata timeout * @param now The current time in milliseconds * @return The list of responses received */ @Override public List<ClientResponse> poll(long timeout, long now) { long metadataTimeout = metadataUpdater.maybeUpdate(now); try { this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs)); } catch (IOException e) { log.error("Unexpected error during I/O", e); } // process completed actions long updatedNow = this.time.milliseconds(); List<ClientResponse> responses = new ArrayList<>(); handleCompletedSends(responses, updatedNow); handleCompletedReceives(responses, updatedNow); handleDisconnections(responses, updatedNow); handleConnections(); handleTimedOutRequests(responses, updatedNow); // invoke callbacks for (ClientResponse response : responses) { if (response.request().hasCallback()) { try { response.request().callback().onComplete(response); } catch (Exception e) { log.error("Uncaught error in request completion:", e); } } } return responses; }
这个方法的脉络就清晰多了,通过方法名和注释,我们几乎可以猜出他的一些作用主要有:
1)注释说:对套接字进行实际读取和写入
2)metadataUpdater.maybeUpdate(),你还记得NetworkClient的组件DefaultMetadataUpdater么,方法名意思是可能进行元数据更新。这个好像很关键的样子
3)接着执行了Selector的poll方法,这个是NetworkClient的另一个组件Selector,还记得么?它底层封装了原生的NIO Selector。这个方法应该也比较关键。
4)后续对response执行了一系列的方法,从名字上看, handleCompletedSends 处理完成发送的请求、handleCompletedReceives处理完成接受的请求、handleDisconnections处理断开连接的请求、handleConnections处理连接成功的请求、处理超时的请求handleTimedOutRequests。根据不同情况有不同的处理。
5)最后还有一个response的相关的回调处理,如果注册了回调函数,会执行下。这个应该不是很关键的逻辑
也就是简单的说就是NetworkClient执行poll方法,主要通过selector处理请求的读取和写入,对响应结果做不同的处理而已。
如下图所示:
到这里其实我们基本摸清出了run方法主要在做的一件事情了,由于是第一次循环,之前的accumulator的ready,networkclient的ready、networkclient的send 什么都没做,第一次while循环run方法核心执行的是networkclient.poll方法。而poll方法的主要逻辑就是上面图中所示的了。
刚才我们分析到,poll方法首先执行的是DefaultMetadataUpdater的maybeUpdate方法,它是可能更新的意思。我们来一起看下他的逻辑吧。
public long maybeUpdate(long now) { // should we update our metadata? long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now); long timeToNextReconnectAttempt = Math.max(this.lastNoNodeAvailableMs + metadata.refreshBackoff() - now, 0); long waitForMetadataFetch = this.metadataFetchInProgress ? Integer.MAX_VALUE : 0; // if there is no node available to connect, back off refreshing metadata long metadataTimeout = Math.max(Math.max(timeToNextMetadataUpdate, timeToNextReconnectAttempt), waitForMetadataFetch); if (metadataTimeout == 0) { // Beware that the behavior of this method and the computation of timeouts for poll() are // highly dependent on the behavior of leastLoadedNode. Node node = leastLoadedNode(now); maybeUpdate(now, node); } return metadataTimeout; } /** * The next time to update the cluster info is the maximum of the time the current info will expire and the time the * current info can be updated (i.e. backoff time has elapsed); If an update has been request then the expiry time * is now */ public synchronized long timeToNextUpdate(long nowMs) { long timeToExpire = needUpdate ? 0 : Math.max(this.lastSuccessfulRefreshMs + this.metadataExpireMs - nowMs, 0); long timeToAllowUpdate = this.lastRefreshMs + this.refreshBackoffMs - nowMs; return Math.max(timeToExpire, timeToAllowUpdate); }
原来这里有一个时间的判断,当判断满足才会执行maybeUpdate。
这个时间计算好像比较复杂,但是大体可以看出来,metadataTimeout是根据三个时间综合判断出来的,如果是0才会执行真正的maybeUpdate()。
像这种时候,我们可以直接在metadataTimeout这里打一个断点,看下它的值是如何计算的,比如下图:
你会发现,当第一次执行while循环,执行到poll方法,执行到这个maybeUpdate的时候,决定metadataTimeout的3个值,有两个是0,其中一个是非0,是一个299720的值。最终导致metadataTimeout也是非0,是299720。
也就是说,第一次while循环不会执行maybeUpdate的任何逻辑。
那么接着向下执行 Selector的poll()方法。
/** * Do whatever I/O can be done on each connection without blocking. This includes completing connections, completing * disconnections, initiating new sends, or making progress on in-progress sends or receives. * 在不阻塞的情况下,在每个连接上做任何可以做的 I/O。这包括完成连接完成、断开连接,启动新的发送,或在进行中的发送或接收请求 */ @Override public void poll(long timeout) throws IOException { if (timeout < 0) throw new IllegalArgumentException("timeout should be >= 0"); clear(); if (hasStagedReceives() || !immediatelyConnectedKeys.isEmpty()) timeout = 0; /* check ready keys */ long startSelect = time.nanoseconds(); //这个方法是NIO底层Selector.select(),会阻塞监听 int readyKeys = select(timeout); long endSelect = time.nanoseconds(); currentTimeNanos = endSelect; this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds()); //如果监听到有操作的SelectionKeys,也就是readyKeys>0< 会执行一些操作 if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) { pollSelectionKeys(this.nioSelector.selectedKeys(), false); pollSelectionKeys(immediatelyConnectedKeys, true); } addToCompletedReceives(); long endIo = time.nanoseconds(); this.sensors.ioTime.record(endIo - endSelect, time.milliseconds()); maybeCloseOldestConnection(); } private int select(long ms) throws IOException { if (ms < 0L) throw new IllegalArgumentException("timeout should be >= 0"); if (ms == 0L) return this.nioSelector.selectNow(); else return this.nioSelector.select(ms); }
上面的脉络主要是2步:
1)select(timeout): NIO底层selector.select(),会阻塞监听
2)pollSelectionKeys(): 监听到有操作的SelectionKeys,做了一些操作
也就是说,最终,Sender线程的run方法,第一次while循环执行poll方法,最后什么都没干,会被selector.select()阻塞住。
如下图所示:
分析完了run方法的执行 ,我们分析的KafkaProducerHelloWorld第一步new KafkaProducer()基本就完成了。
大家经历了一节半的时间,终于分析清楚了KafkaProducer创建的原理。不不知道你对Kafka的Producer是不是有了更深的理解了。
分析了new KafkaProducer()之后呢?
我们继续接着KafkaProducerHelloWorld往下分析,你还记得KafkaProducerHelloWorld的代码么?
public class KafkaProducerHelloWorld { public static void main(String[] args) throws Exception { //配置Kafka的一些参数 Properties props = new Properties(); props.put("bootstrap.servers", "mengfanmao.org:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 创建一个Producer实例 KafkaProducer<String, String> producer = new KafkaProducer<>(props); // 封装一条消息 ProducerRecord<String, String> record = new ProducerRecord<>( "test-topic", "test-key", "test-value"); // 同步方式发送消息,会阻塞在这里,直到发送完成 // producer.send(record).get(); // 异步方式发送消息,不阻塞,设置一个监听回调函数即可 producer.send(record, new Callback() { @Override public void onCompletion(RecordMetadata metadata, Exception exception) { if(exception == null) { System.out.println("消息发送成功"); } else { exception.printStackTrace(); } } }); Thread.sleep(5 * 1000); // 退出producer producer.close(); }
KafkaProducerHelloWorld主要就3步:
1)new KafkaProducer 这个我们已经分析完了,主要分析了配置文件的解析、各个组件是什么、有什么,还有就是刚才分析的run线程第一次循环到底执行了什么。
2) new ProducerRecord 创建待发送的消息
3) producer.send() 发送消息
首先创建待发送的消息:
ProducerRecord<String, String> record = new ProducerRecord<>("test-topic", "test-key", "test-value"); public ProducerRecord(String topic, K key, V value) { this(topic, null, null, key, value); } /** * Creates a record with a specified timestamp to be sent to a specified topic and partition * 创建具有指定时间戳的记录以发送到指定主题和分区 * @param topic The topic the record will be appended to * @param partition The partition to which the record should be sent * @param timestamp The timestamp of the record * @param key The key that will be included in the record * @param value The record contents */ public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value) { if (topic == null) throw new IllegalArgumentException("Topic cannot be null"); if (timestamp != null && timestamp < 0) throw new IllegalArgumentException("Invalid timestamp " + timestamp); this.topic = topic; this.partition = partition; this.key = key; this.value = value; this.timestamp = timestamp; }
我们之前提过,Record表示了一条消息的抽象封装。这个ProducerRecord其实就表示了一条消息。
从构造函数的注释可以看出来,ProducerRecord可以指定往哪个topic,哪一个分区partition,并且消息可以设置一个时间戳。分区和时间戳默认可以不指定
其实看这块源码,我们主要得到的信息就是这些了,这些都比较简单。就不画图了。
当Producer和Record都创建好了之后,可以用同步或者异步的方式发送消息。
// 同步方式发送消息,会阻塞在这里,直到发送完成 // producer.send(record).get(); // 异步方式发送消息,不阻塞,设置一个监听回调函数即可 producer.send(record, new Callback() { @Override public void onCompletion(RecordMetadata metadata, Exception exception) { if(exception == null) { System.out.println("消息发送成功"); } else { exception.printStackTrace(); } } }); //同步发送 @Override public Future<RecordMetadata> send(ProducerRecord<K, V> record) { return send(record, null); } //异步发送 public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) { // intercept the record, which can be potentially modified; this method does not throw exceptions ProducerRecord<K, V> interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record); return doSend(interceptedRecord, callback); }
同步和异步的整个发送逻辑如下图所示:
从上图你会发现,但是无论同步发送还是异步底层都会调用同一个方法doSend()。区别就是有没有callBack回调函数而已,他们还都在调用前注册一些拦截器,这里我们抓大放小下,我们重点还是关注doSend方法。
doSend方法如下:
/** * Implementation of asynchronously send a record to a topic. Equivalent to <code>send(record, null)</code>. * See {@link #send(ProducerRecord, Callback)} for details. */ private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) { TopicPartition tp = null; try { // first make sure the metadata for the topic is available long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); long remainingWaitMs = Math.max(0, this.maxBlockTimeMs - waitedOnMetadataMs); byte[] serializedKey; try { serializedKey = keySerializer.serialize(record.topic(), record.key()); } catch (ClassCastException cce) { throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() + " specified in key.serializer"); } byte[] serializedValue; try { serializedValue = valueSerializer.serialize(record.topic(), record.value()); } catch (ClassCastException cce) { throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() + " specified in value.serializer"); } int partition = partition(record, serializedKey, serializedValue, metadata.fetch()); int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue); ensureValidRecordSize(serializedSize); tp = new TopicPartition(record.topic(), partition); long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp(); log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition); // producer callback will make sure to call both 'callback' and interceptor callback Callback interceptCallback = this.interceptors == null ? callback : new InterceptorCallback<>(callback, this.interceptors, tp); RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs); if (result.batchIsFull || result.newBatchCreated) { log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition); this.sender.wakeup(); } return result.future; // handling exceptions and record the errors; // for API exceptions return them in the future, // for other exceptions throw directly } catch (ApiException e) { log.debug("Exception occurred during message send:", e); if (callback != null) callback.onCompletion(null, e); this.errors.record(); if (this.interceptors != null) this.interceptors.onSendError(record, tp, e); return new FutureFailure(e); } catch (InterruptedException e) { this.errors.record(); if (this.interceptors != null) this.interceptors.onSendError(record, tp, e); throw new InterruptException(e); } catch (BufferExhaustedException e) { this.errors.record(); this.metrics.sensor("buffer-exhausted-records").record(); if (this.interceptors != null) this.interceptors.onSendError(record, tp, e); throw e; } catch (KafkaException e) { this.errors.record(); if (this.interceptors != null) this.interceptors.onSendError(record, tp, e); throw e; } catch (Exception e) { // we notify interceptor about all exceptions, since onSend is called before anything else in this method if (this.interceptors != null) this.interceptors.onSendError(record, tp, e); throw e; } }
这个方法的脉络虽然比较长,但是脉络还是比较清晰,主要先执行了:
1)waitOnMetadata 应该是等待元数据拉取
2)keySerializer.serialize和valueSerializer.serialize,很明显就是将Record序列化成byte字节数组
3)通过partition进行路由分区,按照一定路由策略选择Topic下的某个分区
4)accumulator.append将消息放入缓冲器中
5)唤醒Sender线程的selector.select()的阻塞,开始处理内存缓冲器中的数据。
用图来表示如下所示:
这两节我们重点分析元数据拉取的这个场景的源码原理。
所以这里我们着重先看下步骤1 ,之后的4步我们之后会分析到的。
既然send的第一步是执行waitOnMetadata方法,首先看下它的代码:
/** * Wait for cluster metadata including partitions for the given topic to be available. * @param topic The topic we want metadata for * @param maxWaitMs The maximum time in ms for waiting on the metadata * @return The amount of time we waited in ms */ private long waitOnMetadata(String topic, long maxWaitMs) throws InterruptedException { // add topic to metadata topic list if it is not there already. if (!this.metadata.containsTopic(topic)) this.metadata.add(topic); if (metadata.fetch().partitionsForTopic(topic) != null) return 0; long begin = time.milliseconds(); long remainingWaitMs = maxWaitMs; while (metadata.fetch().partitionsForTopic(topic) == null) { log.trace("Requesting metadata update for topic {}.", topic); int version = metadata.requestUpdate(); sender.wakeup(); metadata.awaitUpdate(version, remainingWaitMs); long elapsed = time.milliseconds() - begin; if (elapsed >= maxWaitMs) throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms."); if (metadata.fetch().unauthorizedTopics().contains(topic)) throw new TopicAuthorizationException(topic); remainingWaitMs = maxWaitMs - elapsed; } return time.milliseconds() - begin; } /** * Get the current cluster info without blocking */ public synchronized Cluster fetch() { return this.cluster; } public synchronized int requestUpdate() { this.needUpdate = true; return this.version; } /** * Wait for metadata update until the current version is larger than the last version we know of */ public synchronized void awaitUpdate(final int lastVersion, final long maxWaitMs) throws InterruptedException { if (maxWaitMs < 0) { throw new IllegalArgumentException("Max time to wait for metadata updates should not be < 0 milli seconds"); } long begin = System.currentTimeMillis(); long remainingWaitMs = maxWaitMs; while (this.version <= lastVersion) { if (remainingWaitMs != 0) wait(remainingWaitMs); long elapsed = System.currentTimeMillis() - begin; if (elapsed >= maxWaitMs) throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms."); remainingWaitMs = maxWaitMs - elapsed; } }
这个方法核心就是判断了是否有Cluster元数据信息,如果没有,进行了如下操作:
1)metadata.requestUpdate(); 更新了一个needUpdate标记,这个值会影响之前maybeUpdate的metadataTimeout的计算,可以让metadataTimeout为0
2)sender.wakeup();唤醒之前nioSelector.select()的阻塞,继续执行
3)metadata.awaitUpdate(version, remainingWaitMs); 主要进行了版本比较,如果不是最新版本,调用了Metadata.wait()方法(wait方法是每个Object都会有的方法,一般和notify或者notifyAll组合使用)
整个过程我直接用图给大家表示一下,如下所示:
整个图就是今天我们分析的关键结果了,这里通过两种阻塞和唤醒机制,一个是NIO中Selector的select()和wakeUp(),一个是MetaData对象的wait()和notifyAll()机制。所以这里要结合之前Sender线程的阻塞逻辑一起来理解。
是不是很有意思一种使用,这里没有用任何线程的join、sleep、wait、park、unpark、notify这些方法。
最后我们简单小结下,这里一节我们主要分析了如下Producer的源码原理:
初始化KafkaProducer时并没有去拉取元数据,但是创建了Selector组件,启动了Sender线程,select阻塞等待请求响应。由于还没有发送任何请求,所以初始化时并没有去真正拉取元数据。
真正拉取元数据是在第一次send方法调用时,会唤醒唤醒Selector之前阻塞的select(),进入第二次while循环,从而发送拉取元数据请求,并且通过Obejct.wait的机制等待60s,等到从Broker拉取元数据成功后,才会继续执行真正的生产消息的请求,否则会报拉取元数据超时异常。
这一节我们只是看到了进行了wait如何等待元数据拉取。
而唤醒Selector的select之后应该会进入第二次while循环
那第二次while循环如何发送请求拉取元数据请求,并且在成功后notifyAll()进行唤醒操作的呢?
让我们下一节继续分析,大家敬请期待! 我们下一节见!
本文由博客一文多发平台 OpenWrite 发布!