FS:文件系统
文件系统组成:
1、文件系统接口
2、对对像管理的软件集合
3、对象及属性
(1)Scale-Out架构允许通过简单地增加存储节点的方式来提高存储容量和性能(磁盘、计算和I/0资源都可以独立增加),支持10GbE和InfiniBand等 高速网络互联
(2) Gluster弹 性哈希(ElasticHash) 解决了GlusterFS对元数据服务器的依赖,改善了单点故障和性能瓶颈,真正实现了并行化数据访问。GlusterFS采用弹性哈希算法在存储池中可以智能地定位任意数据分片(将数据分片存储在不同节点上),不需要查看索引或者向元数据服务器查询
GlusterFS可以对文件进行自动复制,如镜像或多次复制,从而确保数据总是可以访问,甚至是在硬件故障的情况下也能正常访问
当数据出现不一致时,自我修复功能能够把数据恢复到正确的状态,数据的修复是以增量的方式在后台执行,几乎不会产生性能负载。
GlusterFS可以支持所有的存储,因为它没有设计自己的私有数据文件格式,而是采用操作系统中主流标准的磁盘文件系统(如EXT3、XFS等)来存储文件,因此数据可以使用传统访问磁盘的方式被访问
GlusterFS通过将数据储存在逻辑卷中,逻辑卷从逻辑存储池进行独立逻辑划分而得到
逻辑存储池可以在线进行增加和移除,不会导致业务中断。逻辑卷可以根据需求在线增长和缩减,并可以在多个节点中实现负载均衡
文件系统配置也可以实时在线进行更改并应用,从而可以适应工作负载条件变化或在线性能调优
Gluster存储服务支持NFS、CIFS、HTTP、 FTP、SMB及Gluster原生协议,完全与POSIX 标准( 可移植操作系统接口)兼容
现有应用程序不需要做任何修改就可以对Gluster中的数据进行访问,也可以使用专用API进行访问
1、Brick(块存储服务器)实际存储用户数据的服务器
指可信主机池中由主机提供的用于物理存储的专用分区,是GlusterFS中的基本存储单元,同时也是可信存储池中服务器上对外提供的存储目录
存储目录的格式由服务器和目录的绝对路径构成,表示方法为SERVER: EXPORT,如192.168.80.10:/data/mydir/
2、Volume本地文件系统的"分区" 一个逻辑卷是一组Brick 的集合。卷是数据存储的逻辑设备,|类似于LVM中的逻辑卷。大部分Gluster 管理操作是在卷上进行的
3、FUSE用户空间的文件系统(类别EXT4),”这是一个伪文件系统“,用户端的交换模块 是一个内核模块,允许用户创建自己的文件系统,无须修改内核代码
4、VFS(虚拟端口)内核态的虚拟文件系统,用户是提交请求给VFS 然后VFS交给FUSH,再交给GFS客户端,最后由客户端交给远端的存储 内核空间对用户空间提供的访问磁盘的接口
5、Glusterd(服务)是运行再存储节点的进程(客户端运行的是gluster client)GFS使用过程中整个GFS之间的交换由Gluster client 和glusterd完成 在存储群集中的每个节点上都要运行
小结:使用GFS会使用到以上的虚拟文件系统
模块化堆栈式架构
1、API:应用程序编程接口
2、模块化:每个模块可以提供不同的功能
3、堆栈式:同时启用多个模块,多个功能可以组合,实现复杂的功能
1、I/O cache:I/O缓存
2、read ahead:内核文件预读
3、distribute/stripe:分布式、条带化
4、Gige:千兆网/千兆接口
5、TCP/IP:网络协议
6、InfiniBand:网络协议,与TCP/IP相比,TCP/IP具有转发丢失数据包的特性,基于此通信协议可能导致通信变慢,而IB使用基于信任的、流控制的机制来保证连接完整性
7、RDMA:负责数据传输,有一种数据传输协议,功能:为了解决传输过程中客户端与服务器端数据处理的延迟
解读上图:
上半部分为客户端,中间为网络层,下半部分为服务端
1、封装多个功能模块,组成堆栈式的结构,来实现复杂的功能
2、然后以请求的方式与客户端进行交互,客户端与服务端进行交互,由于可能会存在系统兼容问题,需要通过posix来解决系统兼容性问题,让客户端的命令通过posix过滤后可以在服务端执行
上图
1、外来一个请求,例:用户端申请创建一个文件,客户端或应用程序通过GFS的挂载点访问数据
2、linux系统内容通过VFSAPI收到请求并处理
3、VFS将数据递交给FUSE内核文件系统,fuse文件系统则是将数据通过/dev/fuse设备文件递交给了GlusterFS client端
4、GlusterFS client端收到数据后,会根据配置文件的配置对数据进行处理
5、再通过网络,将数据发送给远端的ClusterFS server,并将数据写入到服务器储存设备上
6、server再将数据转交给VFS伪文件系统,再由VFS进行转存处理,最后交给EXT3
弹性HASH算法
通过HASH算法得到一个固定长度的数据(这里是32位整数)
通常情况下,不同数据得到的结果是不同的
为了解决分布式文件数据索引、定位的复杂程度,而使用了HASH算法来辅助
1、分布式卷(默认):文件通过HASH算法分布到所有Brick Server上,这种卷是GFS的基础;以文件为单位根据HASH算法散列到不同的Brick,其实只是扩大了磁盘空间,并不具备容错能力,属于文件级RAID 0
2、条带卷(默认):类似RAID 0,文件被分成数据库并以轮询的方式分布到多个Brick Server上,文件存储以数据块为单位,支持大文件存储,文件越大,读取效率越高
3、复制卷(Replica volume):将文件同步到多个Brick上,使其具备多个文件副本,属于文件级RAID 1,具有容错能力。因为数据分散在多个Brick中,所以读性能得到很大提升,但写性能下降
4、分布式条带卷(Distribute Stripe volume):Brick Server数量是条带数(数据块分布的Brick数量)的倍数,兼具分布式卷和条带的特点
5、分布式复制卷(Distribute Replica volume):Brick Server数量是镜像数(数据副本 数量)的倍数,兼具分布式卷和复制卷的特点
6、条带复制卷(Stripe Replca volume):类似RAID 10,同时具有条带卷和复制卷的特点
7、分布式条带复制卷(Distribute Stripe Replicavolume):三种基本卷的复合卷通常用于类Map Reduce应用
Node1节点:node1/192.168.159.10 磁盘: /dev/sdb1 挂载点: /data/sdb1 /dev/sdc1 /data/sdc1 /dev/sdd1 /data/sdd1 /dev/sde1 /data/sde1 Node2节点:node2/192.168.159.20 磁盘: /dev/sdb1 挂载点: /data/sdb1 /dev/sdc1 /data/sdc1 /dev/sdd1 /data/sdd1 /dev/sde1 /data/sde1 Node3节点:node3/192.168.159.30 磁盘: /dev/sdb1 挂载点: /data/sdb1 /dev/sdc1 /data/sdc1 /dev/sdd1 /data/sdd1 /dev/sde1 /data/sde1 Node4节点:node4/192.168.159.40 磁盘: /dev/sdb1 挂载点: /data/sdb1 /dev/sdc1 /data/sdc1 /dev/sdd1 /data/sdd1 /dev/sde1 /data/sde1 =====客户端节点:192.168.159.50=====
1、首先,每台节点添加四块磁盘,仅做实验,无需太大
2、然后,重启服务器,准备开始部署
node1(192.168.159.10)
hostname node1 su -
node2(192.168.159.20)
hostname node2 su -
node3(192.168.159.30)
hostname node3 su -
node4(192.168.159.40)
hostname node4 su -
所有节点(这里使用node1作为示范)
1.磁盘分区,并挂载 vim /opt/fdisk.sh #!/bin/bash NEWDEV=`ls /dev/sd* | grep -o 'sd[b-z]' | uniq` for VAR in $NEWDEV do echo -e "n\np\n\n\n\nw\n" | fdisk /dev/$VAR &> /dev/null mkfs.xfs /dev/${VAR}"1" &> /dev/null mkdir -p /data/${VAR}"1" &> /dev/null echo "/dev/${VAR}"1" /data/${VAR}"1" xfs defaults 0 0" >> /etc/fstab done mount -a &> /dev/null chmod +x /opt/fdisk.sh cd /opt/ ./fdisk.sh 2.修改主机名,配置/etc/hosts文件 #以Node1节点为例: hostnamectl set-hostname node1 su echo "192.168.116.60 node1" >> /etc/hosts #做IP与主机名映射 echo "192.168.116.70 node2" >> /etc/hosts echo "192.168.116.80 node3" >> /etc/hosts echo "192.168.116.90 node4" >> /etc/hosts
通过scp将脚本传输到其他node服务器上
全部分区及挂载
做IP和主机名的映射
直接传到其他几个node节点
安装本地源并启动GlusterFS
----- 安装、启动GlusterFS (所有node节点上操作) ----- #将gfsrepo软件.上传到/opt目录下 cd /etc/yum.repos.d/ mkdir repo.bak mv *.repo repo.bak vim glfs.repo [glfs] name=glfs baseurl= file:///opt/gfsrepo gpgcheck=0 enabled=1 yum clean all && yum makecache #yum -y install centos-release-gluster #如采用官方YUM源安装,可以直接指向互联网仓库 yum -y install glusterfs glusterfs-server glusterfs-fuse glusterfs-rdma systemctl start glusterd. service systemctl enable glusterd. service systemctl status glusterd. service
========添加节点到存储信任池/群集中(在 node1 节点上操作)======== #只要在一台Node节点上添加其它节点即可 gluster peer probe node1 gluster peer probe node2 gluster peer probe node3 gluster peer probe node4 #在每个Node节点上查看群集状态 gluster peer status ========根据以下规划创建卷========= 卷名称 卷类型 Brick dis-volume 分布式卷 node1(/data/sdb1)、node2(/data/sdb1) stripe-volume 条带卷 node1(/data/sdc1)、node2(/data/sdc1) rep-volume 复制卷 node3(/data/sdb1)、node4(/data/sdb1) dis-stripe 分布式条带卷 node1(/data/sdd1)、node2(/data/sdd1)、node3(/data/sdd1)、node4(/data/sdd1) dis-rep 分布式复制卷 node1(/data/sde1)、node2(/data/sde1)、node3(/data/sde1)、node4(/data/sde1) 1.创建分布式卷 #创建分布式卷,没有指定类型,默认创建的是分布式卷 gluster volume create dis-volume node1:/data/sdb1 node2:/data/sdb1 force #查看卷列表 gluster volume list #启动新建分布式卷 gluster volume start dis-volume #查看创建分布式卷信息 gluster volume info dis-volume 2.创建条带卷 #指定类型为 stripe,数值为 2,且后面跟了 2 个 Brick Server,所以创建的是条带卷 gluster volume create stripe-volume stripe 2 node1:/data/sdc1 node2:/data/sdc1 force gluster volume start stripe-volume gluster volume info stripe-volume 3.创建复制卷 #指定类型为 replica,数值为 2,且后面跟了 2 个 Brick Server,所以创建的是复制卷 gluster volume create rep-volume replica 2 node3:/data/sdb1 node4:/data/sdb1 force gluster volume start rep-volume gluster volume info rep-volume 4.创建分布式条带卷 #指定类型为 stripe,数值为 2,而且后面跟了 4 个 Brick Server,是 2 的两倍,所以创建的是分布式条带卷 gluster volume create dis-stripe stripe 2 node1:/data/sdd1 node2:/data/sdd1 node3:/data/sdd1 node4:/data/sdd1 force gluster volume start dis-stripe gluster volume info dis-stripe 5.创建分布式复制卷 #指定类型为 replica,数值为 2,而且后面跟了 4 个 Brick Server,是 2 的两倍,所以创建的是分布式复制卷 gluster volume create dis-rep replica 2 node1:/data/sde1 node2:/data/sde1 node3:/data/sde1 node4:/data/sde1 force gluster volume start dis-rep gluster volume info dis-rep gluster volume list
1.将gfsrepo软件.上传到/opt目录下 2.配置本地yum源 cd /etc/yum.repos.d/ mkdir repo.bak mv *.repo repo.bak vim glfs.repo [glfs] name=glfs baseurl=file:///opt/gfsrepo gpgcheck=0 enabled=1 yum clean all && yum makecache yum -y install glusterfs glusterfs-fuse 3.创建挂载目录 mkdir -p /test/{dis,stripe,rep,dis_stripe,dis_rep} ls /test 4.配置/etc/hosts 文件 echo "192.168.116.60 node1" >> /etc/hosts echo "192.168.116.70 node2" >> /etc/hosts echo "192.168.116.80 node3" >> /etc/hosts echo "192.168.116.90 node4" >> /etc/hosts 5.挂载 Gluster 文件系统 #临时挂载 mount.glusterfs node1:dis-volume /test/dis mount.glusterfs node1:stripe-volume /test/stripe mount.glusterfs node1:rep-volume /test/rep mount.glusterfs node1:dis-stripe /test/dis_stripe mount.glusterfs node1:dis-rep /test/dis_rep df -Th #永久挂载 vim /etc/fstab node1:dis-volume /test/dis glusterfs defaults,_netdev 0 0 node1:stripe-volume /test/stripe glusterfs defaults,_netdev 0 0 node1:rep-volume /test/rep glusterfs defaults,_netdev 0 0 node1:dis-stripe /test/dis_stripe glusterfs defaults,_netdev 0 0 node1:dis-rep /test/dis_rep glusterfs defaults,_netdev 0 0 ======测试 Gluster 文件系统====== 1.卷中写入文件,客户端操作 cd /opt dd if=/dev/zero of=/opt/demo1.log bs=1M count=40 dd if=/dev/zero of=/opt/demo2.log bs=1M count=40 dd if=/dev/zero of=/opt/demo3.log bs=1M count=40 dd if=/dev/zero of=/opt/demo4.log bs=1M count=40 dd if=/dev/zero of=/opt/demo5.log bs=1M count=40 ls -lh /opt cp demo* /test/dis cp demo* /test/stripe/ cp demo* /test/rep/ cp demo* /test/dis_stripe/ cp demo* /test/dis_rep/ 2.查看文件分布 #查看分布式文件分布 [root@node1 ~]# ls -lh /data/sdb1 #数据没有被分片 总用量 160M -rw-r--r-- 2 root root 40M 12月 18 14:50 demo1.log -rw-r--r-- 2 root root 40M 12月 18 14:50 demo2.log -rw-r--r-- 2 root root 40M 12月 18 14:50 demo3.log -rw-r--r-- 2 root root 40M 12月 18 14:50 demo4.log [root@node2 ~]# ll -h /data/sdb1 总用量 40M -rw-r--r-- 2 root root 40M 12月 18 14:50 demo5.log #查看条带卷文件分布 [root@node1 ~]# ls -lh /data/sdc1 #数据被分片50% 没副本 没冗余 总用量 101M -rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log [root@node2 ~]# ll -h /data/sdc1 #数据被分片50% 没副本 没冗余 总用量 101M -rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log #查看复制卷分布 [root@node3 ~]# ll -h /data/sdb1 #数据没有被分片 有副本 有冗余 总用量 201M -rw-r--r-- 2 root root 40M 12月 18 14:51 demo1.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo2.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo3.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo4.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo5.log [root@node4 ~]# ll -h /data/sdb1 #数据没有被分片 有副本 有冗余 总用量 201M -rw-r--r-- 2 root root 40M 12月 18 14:51 demo1.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo2.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo3.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo4.log -rw-r--r-- 2 root root 40M 12月 18 14:51 demo5.log #查看分布式条带卷分布 [root@node1 ~]# ll -h /data/sdd1 #数据被分片50% 没副本 没冗余 总用量 81M -rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log [root@node2 ~]# ll -h /data/sdd1 总用量 81M -rw-r--r-- 2 root root 20M 12月 18 14:51 demo1.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo2.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo3.log -rw-r--r-- 2 root root 20M 12月 18 14:51 demo4.log [root@node3 ~]# ll -h /data/sdd1 总用量 21M -rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log [root@node4 ~]# ll -h /data/sdd1 总用量 21M -rw-r--r-- 2 root root 20M 12月 18 14:51 demo5.log #查看分布式复制卷分布 #数据没有被分片 有副本 有冗余 [root@node1 ~]# ll -h /data/sde1 总用量 161M -rw-r--r-- 2 root root 40M 12月 18 14:52 demo1.log -rw-r--r-- 2 root root 40M 12月 18 14:52 demo2.log -rw-r--r-- 2 root root 40M 12月 18 14:52 demo3.log -rw-r--r-- 2 root root 40M 12月 18 14:52 demo4.log [root@node2 ~]# ll -h /data/sde1 总用量 161M -rw-r--r-- 2 root root 40M 12月 18 14:52 demo1.log -rw-r--r-- 2 root root 40M 12月 18 14:52 demo2.log -rw-r--r-- 2 root root 40M 12月 18 14:52 demo3.log -rw-r--r-- 2 root root 40M 12月 18 14:52 demo4.log [root@node3 ~]# ll -h /data/sde1 总用量 41M -rw-r--r-- 2 root root 40M 12月 18 14:52 demo5.log [root@node3 ~]# [root@node4 ~]# ll -h /data/sde1 总用量 41M -rw-r--r-- 2 root root 40M 12月 18 14:52 demo5.log ======破坏性测试====== #挂起 node2 节点或者关闭glusterd服务来模拟故障 [root@node2 ~]# systemctl stop glusterd.service #在客户端上查看文件是否正常 #分布式卷数据查看 [root@localhost dis]# ll #在客户端上发现少了demo5.log文件,这个是在node2上的 总用量 163840 -rw-r--r-- 1 root root 41943040 12月 18 14:50 demo1.log -rw-r--r-- 1 root root 41943040 12月 18 14:50 demo2.log -rw-r--r-- 1 root root 41943040 12月 18 14:50 demo3.log -rw-r--r-- 1 root root 41943040 12月 18 14:50 demo4.log #条带卷 [root@localhost text]# cd stripe/ #无法访问,条带卷不具备冗余性 [root@localhost stripe]# ll 总用量 0 #挂起 node2 和 node4 节点,在客户端上查看文件是否正常 #测试复制卷是否正常 [root@localhost rep]# ls -l #在客户机上测试正常 数据有 总用量 204800 -rw-r--r-- 1 root root 41943040 12月 18 14:51 demo1.log -rw-r--r-- 1 root root 41943040 12月 18 14:51 demo2.log -rw-r--r-- 1 root root 41943040 12月 18 14:51 demo3.log -rw-r--r-- 1 root root 41943040 12月 18 14:51 demo4.log -rw-r--r-- 1 root root 41943040 12月 18 14:51 demo5.log #测试分布式条带卷是否正常 [root@localhost dis_stripe]# ll #在客户机上测试正常 没有数据 总用量 0 #测试分布式复制卷是否正常 [root@localhost dis_rep]# ll #在客户机上测试正常 有数据 总用量 204800 -rw-r--r-- 1 root root 41943040 12月 18 14:52 demo1.log -rw-r--r-- 1 root root 41943040 12月 18 14:52 demo2.log -rw-r--r-- 1 root root 41943040 12月 18 14:52 demo3.log -rw-r--r-- 1 root root 41943040 12月 18 14:52 demo4.log -rw-r--r-- 1 root root 41943040 12月 18 14:52 demo5.log
测试总结
凡是带复制的卷,相比而言,数据比较安全
分布式卷文件分布:数据不被分片
条带卷文件分布:数据被分片 ,没副本 ,没冗余
复制卷文件分布:数据不被分片,有副本,可以冗余
分布式条带卷文件分布:数据被分片,无副本,没冗余
分布式复制卷文件分布:数据不被分片,有副本,可以冗余
补充:
其它GFS常用命令
1.查看GlusterFS卷 gluster volume list 2.查看所有卷的信息 gluster volume info 3.查看所有卷的状态 gluster volume status 4.停止一个卷 gluster volume stop dis-stripe 5.删除一个卷,注意:删除卷时,需要先停止卷,且信任池中不能有主机处于宕机状态,否则删除不成功 gluster volume delete dis-stripe 6.设置卷的访问控制 #仅拒绝 gluster volume set dis-rep auth.allow 192.168.200.100 #仅允许 gluster volume set dis-rep auth.allow 192.168.200.* #设置192.168.200.0网段的所有IP地址都能访问dis-rep卷(分布式复制卷)