归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。
package paixu; import java.util.Arrays; public class MergeSort { public static int[] mergeSort(int[] nums, int l, int h) { if (l == h) return new int[] { nums[l] }; int mid = l + (h - l) / 2; int[] leftArr = mergeSort(nums, l, mid); //左有序数组 int[] rightArr = mergeSort(nums, mid + 1, h); //右有序数组 int[] newNum = new int[leftArr.length + rightArr.length]; //新有序数组 int m = 0, i = 0, j = 0; while (i < leftArr.length && j < rightArr.length) { newNum[m++] = leftArr[i] < rightArr[j] ? leftArr[i++] : rightArr[j++]; } while (i < leftArr.length) newNum[m++] = leftArr[i++]; while (j < rightArr.length) newNum[m++] = rightArr[j++]; return newNum; } public static void main(String[] args) { int[] nums = new int[] { 9, 8, 7, 6, 5, 4, 3, 2, 10 }; System.out.println(Arrays.toString(mergeSort(nums, 0, nums.length - 1))); } }
归并操作的工作原理如下:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针超出序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
归并用途: