#include<iostream> using namespace std; int main() { cout << "Hello world" << endl; system("pause"); return 0; }
作用:在代码中加一些说明和解释,方便自己或其他程序员程序员阅读代码
两种格式
// 描述信息
/* 描述信息 */
提示:编译器在编译代码时,会忽略注释的内容
作用:给一段指定的内存空间起名,方便操作这段内存
语法:数据类型 变量名 = 初始值;
注意:C++在创建变量时,必须给变量一个初始值,否则会报错
作用:用于记录程序中不可更改的数据
C++定义常量两种方式
#define 宏常量: #define 常量名 常量值
const修饰的变量 const 数据类型 常量名 = 常量值
作用:关键字是C++中预先保留的单词(标识符)
C++关键字如下:
asm | do | if | return | typedef |
---|---|---|---|---|
auto | double | inline | short | typeid |
bool | dynamic_cast | int | signed | typename |
break | else | long | sizeof | union |
case | enum | mutable | static | unsigned |
catch | explicit | namespace | static_cast | using |
char | export | new | struct | virtual |
class | extern | operator | switch | void |
const | false | private | template | volatile |
const_cast | float | protected | this | wchar_t |
continue | for | public | throw | while |
default | friend | register | true | |
delete | goto | reinterpret_cast | try |
提示:在给变量或者常量起名称时候,不要用C++得关键字,否则会产生歧义。
作用:C++规定给标识符(变量、常量)命名时,有一套自己的规则
建议:给标识符命名时,争取做到见名知意的效果,方便自己和他人的阅读
C++规定在创建一个变量或者常量时,必须要指定出相应的数据类型,否则无法给变量分配内存
数据类型存在的意义:
给变量分配合适的内存空间
作用:整型变量表示的是整数类型的数据
C++中能够表示整型的类型有以下几种方式,区别在于所占内存空间不同:
数据类型 | 占用空间 | 取值范围 |
---|---|---|
short(短整型) | 2字节 | (-2^15 ~ 2^15-1) |
int(整型) | 4字节 | (-2^31 ~ 2^31-1) |
long(长整形) | Windows为4字节,Linux为4字节(32位),8字节(64位) | (-2^31 ~ 2^31-1) |
long long(长长整形) | 8字节 | (-2^63 ~ 2^63-1) |
作用:利用sizeof关键字可以统计数据类型所占内存大小
语法: sizeof( 数据类型 / 变量)
示例:
int main() { cout << "short 类型所占内存空间为: " << sizeof(short) << endl; cout << "int 类型所占内存空间为: " << sizeof(int) << endl; cout << "long 类型所占内存空间为: " << sizeof(long) << endl; cout << "long long 类型所占内存空间为: " << sizeof(long long) << endl; system("pause"); return 0; }
整型结论:short < int <= long <= long long
作用:用于表示小数
浮点型变量分为两种:
两者的区别在于表示的有效数字范围不同。
数据类型 | 占用空间 | 有效数字范围 |
---|---|---|
float | 4字节 | 7位有效数字 |
double | 8字节 | 15~16位有效数字 |
示例:
int main() { float f1 = 3.14f; double d1 = 3.14; cout << f1 << endl; cout << d1<< endl; cout << "float sizeof = " << sizeof(f1) << endl; cout << "double sizeof = " << sizeof(d1) << endl; //科学计数法 float f2 = 3e2; // 3 * 10 ^ 2 cout << "f2 = " << f2 << endl; float f3 = 3e-2; // 3 * 0.1 ^ 2 cout << "f3 = " << f3 << endl; system("pause"); return 0; }
注意:
- 一般在创建float类型的变量时,会在数据后面加上f/F。因为不加的话程序默认数据是double类型,会进行一次转换。
float f1 = 3.14f;- 默认情况下输出一个小数,会显示出6位有效数字;
- 科学计数法:e的后面是正数,代表*10几次方;e的后面是负数,代表*10的负几次方。
float f2 = 3e2; // 3 * 10 ^ 2
float f3 = 3e-2; // 3 * 0.1 ^ 2
**作用:**字符型变量用于显示单个字符
语法:char ch = 'a';
注意1:在显示字符型变量时,用单引号将字符括起来,不要用双引号
注意2:单引号内只能有一个字符,不可以是字符串
示例:
int main() { char ch = 'a'; cout << ch << endl; cout << sizeof(char) << endl; //ch = "abcde"; //错误,不可以用双引号 //ch = 'abcde'; //错误,单引号内只能引用一个字符 cout << (int)ch << endl; //查看字符a对应的ASCII码 ch = 97; //可以直接用ASCII给字符型变量赋值 cout << ch << endl; system("pause"); return 0; }
cout << (int)ch << endl; //查看字符a对应的ASCII码
ch = 97; //可以直接用ASCII给字符型变量赋值
cout << ch << endl;
ASCII码表格:
ASCII值 | 控制字符 | ASCII值 | 字符 | ASCII值 | 字符 | ASCII值 | 字符 |
---|---|---|---|---|---|---|---|
0 | NUT | 32 | (space) | 64 | @ | 96 | 、 |
1 | SOH | 33 | ! | 65 | A | 97 | a |
2 | STX | 34 | " | 66 | B | 98 | b |
3 | ETX | 35 | # | 67 | C | 99 | c |
4 | EOT | 36 | $ | 68 | D | 100 | d |
5 | ENQ | 37 | % | 69 | E | 101 | e |
6 | ACK | 38 | & | 70 | F | 102 | f |
7 | BEL | 39 | , | 71 | G | 103 | g |
8 | BS | 40 | ( | 72 | H | 104 | h |
9 | HT | 41 | ) | 73 | I | 105 | i |
10 | LF | 42 | * | 74 | J | 106 | j |
11 | VT | 43 | + | 75 | K | 107 | k |
12 | FF | 44 | , | 76 | L | 108 | l |
13 | CR | 45 | - | 77 | M | 109 | m |
14 | SO | 46 | . | 78 | N | 110 | n |
15 | SI | 47 | / | 79 | O | 111 | o |
16 | DLE | 48 | 0 | 80 | P | 112 | p |
17 | DCI | 49 | 1 | 81 | Q | 113 | q |
18 | DC2 | 50 | 2 | 82 | R | 114 | r |
19 | DC3 | 51 | 3 | 83 | S | 115 | s |
20 | DC4 | 52 | 4 | 84 | T | 116 | t |
21 | NAK | 53 | 5 | 85 | U | 117 | u |
22 | SYN | 54 | 6 | 86 | V | 118 | v |
23 | TB | 55 | 7 | 87 | W | 119 | w |
24 | CAN | 56 | 8 | 88 | X | 120 | x |
25 | EM | 57 | 9 | 89 | Y | 121 | y |
26 | SUB | 58 | : | 90 | Z | 122 | z |
27 | ESC | 59 | ; | 91 | [ | 123 | { |
28 | FS | 60 | < | 92 | / | 124 | | |
29 | GS | 61 | = | 93 | ] | 125 | } |
30 | RS | 62 | > | 94 | ^ | 126 | ` |
31 | US | 63 | ? | 95 | _ | 127 | DEL |
ASCII 码大致由以下两部分组成:
作用:用于表示一些不能显示出来的ASCII字符
现阶段我们常用的转义字符有:\n \\ \t
转义字符 | 含义 | ASCII码值(十进制) |
---|---|---|
\a | 警报 | 007 |
\b | 退格(BS) ,将当前位置移到前一列 | 008 |
\f | 换页(FF),将当前位置移到下页开头 | 012 |
\n | 换行(LF) ,将当前位置移到下一行开头 | 010 |
\r | 回车(CR) ,将当前位置移到本行开头 | 013 |
\t | 水平制表(HT) (跳到下一个TAB位置) | 009 |
\v | 垂直制表(VT) | 011 |
\\ | 代表一个反斜线字符"" | 092 |
’ | 代表一个单引号(撇号)字符 | 039 |
" | 代表一个双引号字符 | 034 |
? | 代表一个问号 | 063 |
\0 | 数字0 | 000 |
\ddd | 8进制转义字符,d范围0~7 | 3位8进制 |
\xhh | 16进制转义字符,h范围09,af,A~F | 3位16进制 |
注意:当输出多行,想让输出看起来排列有序,可以使用水平制表\t。
从第一个数据开始到\t共占8个字节,\t后面的数据会排列有序。
//使用\t效果 cout<<"aa\thelloworld"<< endl; cout<<"aaaa\thelloworld"<< endl; cout<<"aaaaa\thelloworld"<< endl; //使用空格效果 cout<<"aa helloworld"<< endl; cout<<"aaaa helloworld"<< endl; cout<<"aaaaa helloworld"<< endl;
作用:用于表示一串字符
两种风格
C风格字符串: char 变量名[] = "字符串值"
示例:
int main() { char str1[] = "hello world"; cout << str1 << endl; system("pause"); return 0; }
注意:C风格的字符串要用双引号括起来
C++风格字符串: string 变量名 = "字符串值"
示例:
int main() { string str = "hello world"; cout << str << endl; system("pause"); return 0; }
注意:C++风格字符串,需要加入头文件#include<string>
#include<string>
****:布尔数据类型代表真或假的值
bool类型只有两个值:
bool类型占1个字节大小
示例:
int main() { bool flag = true; cout << flag << endl; // 1 flag = false; cout << flag << endl; // 0 cout << "size of bool = " << sizeof(bool) << endl; //1 system("pause"); return 0; }
作用:用于从键盘获取数据
关键字:cin
语法: cin >> 变量
示例:
int main(){ //整型输入 int a = 0; cout << "请输入整型变量:" << endl; cin >> a; cout << a << endl; //浮点型输入 double d = 0; cout << "请输入浮点型变量:" << endl; cin >> d; cout << d << endl; //字符型输入 char ch = 0; cout << "请输入字符型变量:" << endl; cin >> ch; cout << ch << endl; //字符串型输入 string str; cout << "请输入字符串型变量:" << endl; cin >> str; cout << str << endl; //布尔类型输入 bool flag = true; cout << "请输入布尔型变量:" << endl; cin >> flag; cout << flag << endl; system("pause"); return EXIT_SUCCESS; }
作用:用于执行代码的运算
本章我们主要讲解以下几类运算符:
运算符类型 | 作用 |
---|---|
算术运算符 | 用于处理四则运算 |
赋值运算符 | 用于将表达式的值赋给变量 |
比较运算符 | 用于表达式的比较,并返回一个真值或假值 |
逻辑运算符 | 用于根据表达式的值返回真值或假值 |
作用:用于处理四则运算
算术运算符包括以下符号:
运算符 | 术语 | 示例 | 结果 |
---|---|---|---|
+ | 正号 | +3 | 3 |
- | 负号 | -3 | -3 |
+ | 加 | 10 + 5 | 15 |
- | 减 | 10 - 5 | 5 |
* | 乘 | 10 * 5 | 50 |
/ | 除 | 10 / 5 | 2 |
% | 取模(取余) | 10 % 3 | 1 |
++ | 前置递增 | a=2; b=++a; | a=3; b=3; |
++ | 后置递增 | a=2; b=a++; | a=3; b=2; |
– | 前置递减 | a=2; b=–a; | a=1; b=1; |
– | 后置递减 | a=2; b=a–; | a=1; b=2; |
示例1:
//加减乘除 int main() { int a1 = 10; int b1 = 3; cout << a1 + b1 << endl; cout << a1 - b1 << endl; cout << a1 * b1 << endl; cout << a1 / b1 << endl; //两个整数相除结果依然是整数 int a2 = 10; int b2 = 20; cout << a2 / b2 << endl; int a3 = 10; int b3 = 0; //cout << a3 / b3 << endl; //报错,除数不可以为0 //两个小数可以相除 double d1 = 0.5; double d2 = 0.25; cout << d1 / d2 << endl; system("pause"); return 0; }
总结:在除法运算中,除数不能为0
示例2:
//取模 int main() { int a1 = 10; int b1 = 3; cout << 10 % 3 << endl; int a2 = 10; int b2 = 20; cout << a2 % b2 << endl; int a3 = 10; int b3 = 0; //cout << a3 % b3 << endl; //取模运算时,除数也不能为0 //两个小数不可以取模 double d1 = 3.14; double d2 = 1.1; //cout << d1 % d2 << endl; system("pause"); return 0; }
总结:只有整型变量可以进行取模运算
示例3:
//递增 int main() { //后置递增 int a = 10; a++; //等价于a = a + 1 cout << a << endl; // 11 //前置递增 int b = 10; ++b; cout << b << endl; // 11 //区别 //前置递增先对变量进行++,再计算表达式 int a2 = 10; int b2 = ++a2 * 10; cout << b2 << endl; //后置递增先计算表达式,后对变量进行++ int a3 = 10; int b3 = a3++ * 10; cout << b3 << endl; system("pause"); return 0; }
总结:前置递增先对变量进行++,再计算表达式,后置递增相反
作用:用于将表达式的值赋给变量
赋值运算符包括以下几个符号:
运算符 | 术语 | 示例 | 结果 |
---|---|---|---|
= | 赋值 | a=2; b=3; | a=2; b=3; |
+= | 加等于 | a=0; a+=2; | a=2; |
-= | 减等于 | a=5; a-=3; | a=2; |
*= | 乘等于 | a=2; a*=2; | a=4; |
/= | 除等于 | a=4; a/=2; | a=2; |
%= | 模等于 | a=3; a%2; | a=1; |
示例:
int main() { //赋值运算符 // = int a = 10; a = 100; cout << "a = " << a << endl; // += a = 10; a += 2; // a = a + 2; cout << "a = " << a << endl; // -= a = 10; a -= 2; // a = a - 2 cout << "a = " << a << endl; // *= a = 10; a *= 2; // a = a * 2 cout << "a = " << a << endl; // /= a = 10; a /= 2; // a = a / 2; cout << "a = " << a << endl; // %= a = 10; a %= 2; // a = a % 2; cout << "a = " << a << endl; system("pause"); return 0; }
**作用:**用于表达式的比较,并返回一个真值或假值
比较运算符有以下符号:
运算符 | 术语 | 示例 | 结果 |
---|---|---|---|
== | 相等于 | 4 == 3 | 0 |
!= | 不等于 | 4 != 3 | 1 |
< | 小于 | 4 < 3 | 0 |
> | 大于 | 4 > 3 | 1 |
<= | 小于等于 | 4 <= 3 | 0 |
>= | 大于等于 | 4 >= 1 | 1 |
示例:
int main() { int a = 10; int b = 20; cout << (a == b) << endl; // 0 cout << (a != b) << endl; // 1 cout << (a > b) << endl; // 0 cout << (a < b) << endl; // 1 cout << (a >= b) << endl; // 0 cout << (a <= b) << endl; // 1 system("pause"); return 0; }
注意:C和C++ 语言的比较运算中, “真”用数字“1”来表示, “假”用数字“0”来表示。
如果这样写的话:cout << (a == b) << endl;
要给 a==b 加个括号,因为有优先级,否则会报错。
作用:用于根据表达式的值返回真值或假值
逻辑运算符有以下符号:
运算符 | 术语 | 示例 | 结果 |
---|---|---|---|
! | 非 | !a | 如果a为假,则!a为真; 如果a为真,则!a为假。 |
&& | 与 | a && b | 如果a和b都为真,则结果为真,否则为假。 |
|| | 或 | a || b | 如果a和b有一个为真,则结果为真,二者都为假时,结果为假。 |
示例1:逻辑非
//逻辑运算符 --- 非 int main() { int a = 10; cout << !a << endl; // 0 cout << !!a << endl; // 1 system("pause"); return 0; }
总结: 真变假,假变真
为什么 !a 输出的是0?因为在C++中,除了0都是真。所以10是真,!10就是假0。
示例2:逻辑与
//逻辑运算符 --- 与 int main() { int a = 10; int b = 10; cout << (a && b) << endl;// 1 a = 10; b = 0; cout << (a && b) << endl;// 0 a = 0; b = 0; cout << (a && b) << endl;// 0 system("pause"); return 0; }
总结:逻辑与运算符总结: 同真为真,其余为假
示例3:逻辑或
//逻辑运算符 --- 或 int main() { int a = 10; int b = 10; cout << (a || b) << endl;// 1 a = 10; b = 0; cout << (a || b) << endl;// 1 a = 0; b = 0; cout << (a || b) << endl;// 0 system("pause"); return 0; }
逻辑或运算符总结: 同假为假,其余为真
C/C++支持最基本的三种程序运行结构:顺序结构、选择结构、循环结构
作用:执行满足条件的语句
if语句的三种形式
单行格式if语句
多行格式if语句
多条件的if语句
单行格式if语句:if(条件){ 条件满足执行的语句 }
示例:
int main() { //选择结构-单行if语句 //输入一个分数,如果分数大于600分,视为考上一本大学,并在屏幕上打印 int score = 0; cout << "请输入一个分数:" << endl; cin >> score; cout << "您输入的分数为: " << score << endl; //if语句 //注意事项,在if判断语句后面,不要加分号 if (score > 600) { cout << "我考上了一本大学!!!" << endl; } system("pause"); return 0; }
注意:if条件表达式后不要加分号
if(条件){ 条件满足执行的语句 }else{ 条件不满足执行的语句 };
示例:
int main() { int score = 0; cout << "请输入考试分数:" << endl; cin >> score; if (score > 600) { cout << "我考上了一本大学" << endl; } else { cout << "我未考上一本大学" << endl; } system("pause"); return 0; }
if(条件1){ 条件1满足执行的语句 }else if(条件2){条件2满足执行的语句}... else{ 都不满足执行的语句}
示例:
int main() { int score = 0; cout << "请输入考试分数:" << endl; cin >> score; if (score > 600) { cout << "我考上了一本大学" << endl; } else if (score > 500) { cout << "我考上了二本大学" << endl; } else if (score > 400) { cout << "我考上了三本大学" << endl; } else { cout << "我未考上本科" << endl; } system("pause"); return 0; }
嵌套if语句:在if语句中,可以嵌套使用if语句,达到更精确的条件判断
案例需求:
示例:
int main() { int score = 0; cout << "请输入考试分数:" << endl; cin >> score; if (score > 600) { cout << "我考上了一本大学" << endl; if (score > 700) { cout << "我考上了北大" << endl; } else if (score > 650) { cout << "我考上了清华" << endl; } else { cout << "我考上了人大" << endl; } } else if (score > 500) { cout << "我考上了二本大学" << endl; } else if (score > 400) { cout << "我考上了三本大学" << endl; } else { cout << "我未考上本科" << endl; } system("pause"); return 0; }
作用: 通过三目运算符实现简单的判断
语法:表达式1 ? 表达式2 :表达式3
解释:
如果表达式1的值为真,执行表达式2,并返回表达式2的结果;
如果表达式1的值为假,执行表达式3,并返回表达式3的结果。
示例:
int main() { int a = 10; int b = 20; int c = 0; c = a > b ? a : b; cout << "c = " << c << endl; //C++中三目运算符返回的是变量,可以继续赋值 (a > b ? a : b) = 100; cout << "a = " << a << endl; cout << "b = " << b << endl; cout << "c = " << c << endl; system("pause"); return 0; }
总结:和if语句比较,三目运算符优点是短小整洁,缺点是如果用嵌套,结构不清晰
C++中三目运算符返回的是变量,可以继续赋值
作用:执行多条件分支语句
语法:
switch(表达式) { case 结果1:执行语句;break; case 结果2:执行语句;break; ... default:执行语句;break; }
示例:
int main() { //请给电影评分 //10 ~ 9 经典 // 8 ~ 7 非常好 // 6 ~ 5 一般 // 5分以下 烂片 int score = 0; cout << "请给电影打分" << endl; cin >> score; switch (score) { case 10: case 9: cout << "经典" << endl; break; case 8: case 7: cout << "非常好" << endl; break; case 6: case 5: cout << "一般" << endl; break; default: cout << "烂片" << endl; break; } system("pause"); return 0; }
注意1:switch语句中表达式类型只能是整型或者字符型
注意2:case里如果没有break,那么程序会一直向下执行
总结:与if语句比,对于多条件判断时,switch的结构清晰,执行效率高,缺点是switch不可以判断区间
作用:满足循环条件,执行循环语句
语法:while(循环条件){ 循环语句 }
解释:只要循环条件的结果为真,就执行循环语句
示例:
int main() { int num = 0; while (num < 10) { cout << "num = " << num << endl; num++; } system("pause"); return 0; }
注意:在执行循环语句时候,程序必须提供跳出循环的出口,否则出现死循环
作用: 满足循环条件,执行循环语句
语法: do{ 循环语句 } while(循环条件);
注意:与while的区别在于do…while会先执行一次循环语句,再判断循环条件
示例:
int main() { int num = 0; do { cout << num << endl; num++; } while (num < 10); system("pause"); return 0; }
总结:与while循环区别在于,do…while先执行一次循环语句,再判断循环条件
注意:do{…}while(); 最后有分号
作用: 满足循环条件,执行循环语句
语法:for(起始表达式;条件表达式;末尾循环体) { 循环语句; }
示例:
int main() { for (int i = 0; i < 10; i++) { cout << i << endl; } system("pause"); return 0; }
注意:for循环中的表达式,要用分号进行分隔
总结:while , do…while, for都是开发中常用的循环语句,for循环结构比较清晰,比较常用
作用: 在循环体中再嵌套一层循环,解决一些实际问题
示例:
int main() { //外层循环执行1次,内层循环执行1轮 for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { cout << "*" << " "; } cout << endl; } system("pause"); return 0; }
作用: 用于跳出选择结构或者循环结构
break使用的时机:
示例1:
int main() { //1、在switch 语句中使用break cout << "请选择您挑战副本的难度:" << endl; cout << "1、普通" << endl; cout << "2、中等" << endl; cout << "3、困难" << endl; int num = 0; cin >> num; switch (num) { case 1: cout << "您选择的是普通难度" << endl; break; case 2: cout << "您选择的是中等难度" << endl; break; case 3: cout << "您选择的是困难难度" << endl; break; } system("pause"); return 0; }
示例2:
int main() { //2、在循环语句中用break for (int i = 0; i < 10; i++) { if (i == 5) { break; //跳出循环语句 } cout << i << endl; } system("pause"); return 0; }
示例3:
int main() { //在嵌套循环语句中使用break,退出内层循环 for (int i = 0; i < 10; i++) { for (int j = 0; j < 10; j++) { if (j == 5) { break; } cout << "*" << " "; } cout << endl; } system("pause"); return 0; }
作用:在循环语句中,跳过本次循环中余下尚未执行的语句,继续执行下一次循环
示例:
int main() { for (int i = 0; i < 100; i++) { if (i % 2 == 0) { continue; } cout << i << endl; } system("pause"); return 0; }
注意:continue并没有使整个循环终止,而break会跳出循环
作用:可以无条件跳转语句
语法: goto 标记;
解释:如果标记的名称存在,执行到goto语句时,会跳转到标记的位置
示例:
int main() { cout << "1" << endl; goto FLAG; cout << "2" << endl; cout << "3" << endl; cout << "4" << endl; FLAG: cout << "5" << endl; system("pause"); return 0; }
注意:在程序中不建议使用goto语句,以免造成程序流程混乱
标记命名规则和变量名一样,但是一般采用全大写。
所谓数组,就是一个集合,里面存放了相同类型的数据元素
特点1:数组中的每个数据元素都是相同的数据类型
特点2:数组是由连续的内存位置组成的
一维数组定义的三种方式:
数据类型 数组名[ 数组长度 ];
数据类型 数组名[ 数组长度 ] = { 值1,值2 ...};
数据类型 数组名[ ] = { 值1,值2 ...};
示例
int main() { //定义方式1 //数据类型 数组名[元素个数]; int score[10]; //利用下标赋值 score[0] = 100; score[1] = 99; score[2] = 85; //利用下标输出 cout << score[0] << endl; cout << score[1] << endl; cout << score[2] << endl; //第二种定义方式 //数据类型 数组名[元素个数] = {值1,值2 ,值3 ...}; //如果{}内不足10个数据,剩余数据用0补全 int score2[10] = { 100, 90,80,70,60,50,40,30,20,10 }; //逐个输出 //cout << score2[0] << endl; //cout << score2[1] << endl; //一个一个输出太麻烦,因此可以利用循环进行输出 for (int i = 0; i < 10; i++) { cout << score2[i] << endl; } //定义方式3 //数据类型 数组名[] = {值1,值2 ,值3 ...}; int score3[] = { 100,90,80,70,60,50,40,30,20,10 }; for (int i = 0; i < 10; i++) { cout << score3[i] << endl; } system("pause"); return 0; }
总结1:数组名的命名规范与变量名命名规范一致,不要和变量重名
总结2:数组中下标是从0开始索引
一维数组名称的用途:
示例:
int main() { //数组名用途 //1、可以获取整个数组占用内存空间大小 int arr[10] = { 1,2,3,4,5,6,7,8,9,10 }; cout << "整个数组所占内存空间为: " << sizeof(arr) << endl; cout << "每个元素所占内存空间为: " << sizeof(arr[0]) << endl; cout << "数组的元素个数为: " << sizeof(arr) / sizeof(arr[0]) << endl; //2、可以通过数组名获取到数组首地址 cout << "数组首地址为: " << (int)arr << endl; cout << "数组中第一个元素地址为: " << (int)&arr[0] << endl; cout << "数组中第二个元素地址为: " << (int)&arr[1] << endl; //arr = 100; 错误,数组名是常量,因此不可以赋值 system("pause"); return 0; }
1、可以获取整个数组占用内存空间大小 int arr[10] = { 1,2,3,4,5,6,7,8,9,10 }; cout << "整个数组所占内存空间为: " << sizeof(arr) << endl; cout << "每个元素所占内存空间为: " << sizeof(arr[0]) << endl; cout << "数组的元素个数为: " << sizeof(arr) / sizeof(arr[0]) << endl;
2、可以通过数组名获取到数组首地址 cout << "数组首地址为: " << (int)arr << endl; cout << "数组中第一个元素地址为: " << (int)&arr[0] << endl; cout << "数组中第二个元素地址为: " << (int)&arr[1] << endl;
注意:数组名是常量,不可以赋值
总结1:直接打印数组名,可以查看数组所占内存的首地址
总结2:对数组名进行sizeof,可以获取整个数组占内存空间的大小
作用: 最常用的排序算法,对数组内元素进行排序
示例: 将数组 { 4,2,8,0,5,7,1,3,9 } 进行升序排序
int main() { int arr[9] = { 4,2,8,0,5,7,1,3,9 }; for (int i = 0; i < 9 - 1; i++) { for (int j = 0; j < 9 - 1 - i; j++) { if (arr[j] > arr[j + 1]) { int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } for (int i = 0; i < 9; i++) { cout << arr[i] << endl; } system("pause"); return 0; }
二维数组就是在一维数组上,多加一个维度。
二维数组定义的四种方式:
数据类型 数组名[ 行数 ][ 列数 ];
数据类型 数组名[ 行数 ][ 列数 ] = { {数据1,数据2 } ,{数据3,数据4 } };
数据类型 数组名[ 行数 ][ 列数 ] = { 数据1,数据2,数据3,数据4};
数据类型 数组名[ ][ 列数 ] = { 数据1,数据2,数据3,数据4};
建议:以上4种定义方式,利用第二种更加直观,提高代码的可读性
示例:
int main() { //方式1 //数组类型 数组名 [行数][列数] int arr[2][3]; arr[0][0] = 1; arr[0][1] = 2; arr[0][2] = 3; arr[1][0] = 4; arr[1][1] = 5; arr[1][2] = 6; for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { cout << arr[i][j] << " "; } cout << endl; } //方式2 //数据类型 数组名[行数][列数] = { {数据1,数据2 } ,{数据3,数据4 } }; int arr2[2][3] = { {1,2,3}, {4,5,6} }; //方式3 //数据类型 数组名[行数][列数] = { 数据1,数据2 ,数据3,数据4 }; int arr3[2][3] = { 1,2,3,4,5,6 }; //方式4 //数据类型 数组名[][列数] = { 数据1,数据2 ,数据3,数据4 }; int arr4[][3] = { 1,2,3,4,5,6 }; system("pause"); return 0; }
总结:在定义二维数组时,如果初始化了数据,可以省略行数
示例:
int main() { //二维数组数组名 int arr[2][3] = { {1,2,3}, {4,5,6} }; cout << "二维数组大小: " << sizeof(arr) << endl; cout << "二维数组一行大小: " << sizeof(arr[0]) << endl; cout << "二维数组元素大小: " << sizeof(arr[0][0]) << endl; cout << "二维数组行数: " << sizeof(arr) / sizeof(arr[0]) << endl; cout << "二维数组列数: " << sizeof(arr[0]) / sizeof(arr[0][0]) << endl; //地址 cout << "二维数组首地址:" << arr << endl; cout << "二维数组第一行地址:" << arr[0] << endl; cout << "二维数组第二行地址:" << arr[1] << endl; cout << "二维数组第一个元素地址:" << &arr[0][0] << endl; cout << "二维数组第二个元素地址:" << &arr[0][1] << endl; system("pause"); return 0; }
cout << "二维数组行数: " << sizeof(arr) / sizeof(arr[0]) << endl; cout << "二维数组列数: " << sizeof(arr[0]) / sizeof(arr[0][0]) << endl;
cout << "二维数组首地址:" << arr << endl; cout << "二维数组第一行地址:" << arr[0] << endl; cout << "二维数组第二行地址:" << arr[1] << endl; cout << "二维数组第一个元素地址:" << &arr[0][0] << endl; cout << "二维数组第二个元素地址:" << &arr[0][1] << endl;
总结1:二维数组名就是这个数组的首地址
总结2:对二维数组名进行sizeof时,可以获取整个二维数组占用的内存空间大小
作用:将一段经常使用的代码封装起来,减少重复代码
一个较大的程序,一般分为若干个程序块,每个模块实现特定的功能。
函数的定义一般主要有5个步骤:
1、返回值类型
2、函数名
3、参数表列
4、函数体语句
5、return 表达式
语法:
返回值类型 函数名 (参数列表) { 函数体语句 return表达式 }
示例:定义一个加法函数,实现两个数相加
//函数定义 int add(int num1, int num2) { int sum = num1 + num2; return sum; }
功能:使用定义好的函数
语法:函数名(参数)
示例:
//函数定义 int add(int num1, int num2) //定义中的num1,num2称为形式参数,简称形参 { int sum = num1 + num2; return sum; } int main() { int a = 10; int b = 10; //调用add函数 int sum = add(a, b);//调用时的a,b称为实际参数,简称实参 cout << "sum = " << sum << endl; a = 100; b = 100; sum = add(a, b); cout << "sum = " << sum << endl; system("pause"); return 0; }
总结:函数定义里小括号内称为形参,函数调用时传入的参数称为实参
示例:
void swap(int num1, int num2) { cout << "交换前:" << endl; cout << "num1 = " << num1 << endl; cout << "num2 = " << num2 << endl; int temp = num1; num1 = num2; num2 = temp; cout << "交换后:" << endl; cout << "num1 = " << num1 << endl; cout << "num2 = " << num2 << endl; //return ; 当函数声明时候,不需要返回值,可以不写return } int main() { int a = 10; int b = 20; swap(a, b); cout << "mian中的 a = " << a << endl; cout << "mian中的 b = " << b << endl; system("pause"); return 0; }
总结: 值传递时,形参是修饰不了实参的
常见的函数样式有4种
示例:
//函数常见样式 //1、 无参无返 void test01() { //void a = 10; //无类型不可以创建变量,原因无法分配内存 cout << "this is test01" << endl; //test01(); 函数调用 } //2、 有参无返 void test02(int a) { cout << "this is test02" << endl; cout << "a = " << a << endl; } //3、无参有返 int test03() { cout << "this is test03 " << endl; return 10; } //4、有参有返 int test04(int a, int b) { cout << "this is test04 " << endl; int sum = a + b; return sum; }
作用: 告诉编译器函数名称及如何调用函数。函数的实际主体可以单独定义。
会发现都是把函数的定义写在main函数之前,那么能不能写在main函数之后?
可以,但是要在main函数之前写函数的声明;
因为程序是自上而下运行的,如果把函数的定义写在main函数之后,运行到main函数里面的其他函数时就会报错,找不到这个函数。
示例:
int max(int a, int b);
//声明可以多次,定义只能一次 //声明 int max(int a, int b); int max(int a, int b); //定义 int max(int a, int b) { return a > b ? a : b; } int main() { int a = 100; int b = 200; cout << max(a, b) << endl; system("pause"); return 0; }
作用:让代码结构更加清晰
函数分文件编写一般有4个步骤
注意:
示例:
//swap.h文件 #include<iostream> using namespace std; //实现两个数字交换的函数声明 void swap(int a, int b);
//swap.cpp文件 #include "swap.h" void swap(int a, int b) { int temp = a; a = b; b = temp; cout << "a = " << a << endl; cout << "b = " << b << endl; }
//main函数文件 #include "swap.h" int main() { int a = 100; int b = 200; swap(a, b); system("pause"); return 0; }
指针的作用: 可以通过指针间接访问内存
指针变量定义语法: 数据类型 * 变量名;
1、定义指针 int a=10; 指针定义的语法:数据类型 * 指针变量名 int *p; 让指针保存变量a的地址 p=&a; cout<<"a的地址为:"<<&a<<endl; cout<<"指针p为:"<<p<<endl; 输出结果相同
2、使用指针 可以通过解引用的方式来找到指针指向的内存中的数据,从而改变它 指针前加 * 代表解引用,找到指针指向的内存中的数据 *p=1000; cout<<"a="<<a<<endl; cout<<"*p="<<*p<<endl; 输出结果相同
示例:
int main() { //1、指针的定义 int a = 10; //定义整型变量a //指针定义语法: 数据类型 * 变量名 ; int * p; //指针变量赋值 p = &a; //指针指向变量a的地址 cout << &a << endl; //打印数据a的地址 cout << p << endl; //打印指针变量p //2、指针的使用 //通过*操作指针变量指向的内存 cout << "*p = " << *p << endl; system("pause"); return 0; }
指针变量和普通变量的区别
总结1: 我们可以通过 & 符号 获取变量的地址
总结2:利用指针可以记录地址
总结3:对指针变量解引用,可以操作指针指向的内存
提问:指针也是种数据类型,那么这种数据类型占用多少内存空间?
示例:
int main() { int a = 10; int * p; p = &a; //指针指向数据a的地址 cout << *p << endl; //* 解引用 cout << sizeof(p) << endl; cout << sizeof(char *) << endl; cout << sizeof(float *) << endl; cout << sizeof(double *) << endl; system("pause"); return 0; }
int main() { int a = 10; int* p; p = &a; //指针指向数据a的地址 cout << *p << endl; //* 解引用 cout << sizeof(p) << endl;//这里p就是 int * cout << sizeof(char *) << endl; cout << sizeof(float *) << endl; cout << sizeof(double *) << endl; system("pause"); return 0; } 输出 10 //64位操作系统下: 8 8 8 8
总结:所有指针类型在32位操作系统下是4个字节,在64位操作系统下是8个字节
空指针:指针变量指向内存中编号为0的空间
用途:初始化指针变量
注意:空指针指向的内存是不可以访问的
示例1:空指针
int main() { //指针变量p指向内存地址编号为0的空间 int * p = NULL; //访问空指针报错 //内存编号0 ~255为系统占用内存,不允许用户访问 cout << *p << endl; system("pause"); return 0; }
空指针 1、空指针用于给指针变量初始化 int *p=NULL; 2、空指针是不可以进行访问的 *p=100;//这样写是错的 因为0~255之间的内存编号是系统占用的,因此不可以访问 空指针指向内存编号为0的空间
野指针:指针变量指向非法的内存空间,指向一个不是我们申请的空间是无法访问的。
示例2:野指针
int main() { //指针变量p指向内存地址编号为0x1100的空间 int * p = (int *)0x1100; //访问野指针报错 cout << *p << endl; system("pause"); return 0; }
总结:空指针和野指针都不是我们申请的空间,因此不要访问。
const修饰指针有三种情况
示例:
int main() { int a = 10; int b = 10; //const修饰的是指针,指针指向可以改,指针指向的值不可以更改 const int * p1 = &a; p1 = &b; //正确 //*p1 = 100; 报错 //const修饰的是常量,指针指向不可以改,指针指向的值可以更改 int * const p2 = &a; //p2 = &b; //错误 *p2 = 100; //正确 //const既修饰指针又修饰常量 const int * const p3 = &a; //p3 = &b; //错误 //*p3 = 100; //错误 system("pause"); return 0; }
int a=10; const int * p=&a; const * 常量指针 const后面是*,所以指针指向的值*p可以改,指针指向p不可以改 int * const p=&a; * const 指针常量 const后面是p,所以指针指向p可以改,指针指向的值*p不可以改 const int * const p 指针指向和指针指向的值都不可以改
技巧:看const右侧紧跟着的是指针还是常量, 是指针就是常量指针,是常量就是指针常量
作用:利用指针访问数组中元素
int arr[] = { 1,2,3,4,5,6,7,8,9,10 }; int * p = arr; //指向数组的指针 for (int i = 0; i < 10; i++) { //利用指针遍历数组 cout << *p << endl; p++; }
示例:
int main() { int arr[] = { 1,2,3,4,5,6,7,8,9,10 }; int * p = arr; //指向数组的指针 cout << "第一个元素: " << arr[0] << endl; cout << "指针访问第一个元素: " << *p << endl; for (int i = 0; i < 10; i++) { //利用指针遍历数组 cout << *p << endl; p++; } system("pause"); return 0; }
作用:利用指针作函数参数,可以修改实参的值
void swap2(int * p1, int *p2) { int temp = *p1; *p1 = *p2; *p2 = temp; } int main() { int a = 10; int b = 20; swap2(&a, &b); //地址传递会改变实参 cout << "a = " << a << endl; cout << "b = " << b << endl; system("pause"); return 0; }
示例:
//值传递 void swap1(int a ,int b) { int temp = a; a = b; b = temp; } //地址传递 void swap2(int * p1, int *p2) { int temp = *p1; *p1 = *p2; *p2 = temp; } int main() { int a = 10; int b = 20; swap1(a, b); // 值传递不会改变实参 swap2(&a, &b); //地址传递会改变实参 cout << "a = " << a << endl; cout << "b = " << b << endl; system("pause"); return 0; }
总结:如果不想修改实参,就用值传递,如果想修改实参,就用地址传递
案例描述:封装一个函数,利用冒泡排序,实现对整型数组的升序排序
例如数组:int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };
示例:
//冒泡排序函数 void bubbleSort(int * arr, int len) //int * arr 也可以写为int arr[] { for (int i = 0; i < len - 1; i++) { for (int j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j + 1]) { int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } } //打印数组函数 void printArray(int arr[], int len) { for (int i = 0; i < len; i++) { cout << arr[i] << endl; } } int main() { int arr[10] = { 4,3,6,9,1,2,10,8,7,5 }; int len = sizeof(arr) / sizeof(int); bubbleSort(arr, len); printArray(arr, len); system("pause"); return 0; }
总结:当数组名传入到函数作为参数时,被退化为指向首元素的指针
结构体属于用户自定义的数据类型,允许用户存储不同的数据类型
语法:struct 结构体名 { 结构体成员列表 };
通过结构体创建变量的方式有三种:
结构体的定义: struct 结构体名 { 结构体成员列表 }; struct不可省略 不要忘记最后的分号
通过结构体创建变量的方式有三种: 第一种: struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; int main() { //结构体变量创建方式1 struct student stu1; struct 关键字可以省略 stu1.name = "张三"; stu1.age = 18; stu1.score = 100; cout << "姓名:" << stu1.name << " 年龄:" << stu1.age << " 分数:" << stu1.score << endl; system("pause"); return 0; } 第二种方式: struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; int main() { //结构体变量创建方式2 struct student stu2 = { "李四",19,60 }; struct 关键字可以省略 cout << "姓名:" << stu2.name << " 年龄:" << stu2.age << " 分数:" << stu2.score << endl; system("pause"); return 0; } 第三种方式: struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }stu3; //结构体变量创建方式3 int main() { stu3.name = "王五"; stu3.age = 18; stu3.score = 80; cout << "姓名:" << stu3.name << " 年龄:" << stu3.age << " 分数:" << stu3.score << endl; system("pause"); return 0; } 一般使用第一、二种方式,不使用第三种方式
示例:
//结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }stu3; //结构体变量创建方式3 int main() { //结构体变量创建方式1 struct student stu1; //struct 关键字可以省略 stu1.name = "张三"; stu1.age = 18; stu1.score = 100; cout << "姓名:" << stu1.name << " 年龄:" << stu1.age << " 分数:" << stu1.score << endl; //结构体变量创建方式2 struct student stu2 = { "李四",19,60 }; cout << "姓名:" << stu2.name << " 年龄:" << stu2.age << " 分数:" << stu2.score << endl; stu3.name = "王五"; stu3.age = 18; stu3.score = 80; cout << "姓名:" << stu3.name << " 年龄:" << stu3.age << " 分数:" << stu3.score << endl; system("pause"); return 0; }
总结1:定义结构体时的关键字是struct,不可省略
总结2:创建结构体变量时,关键字struct可以省略
总结3:结构体变量利用操作符 ‘’.’’ 访问成员
作用:将自定义的结构体放入到数组中方便维护,这样操作多个结构体变量就很方便
语法:struct 结构体名 数组名[元素个数] = { {} , {} , ... {} }
struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; int main() { //结构体数组 struct student arr[3]= { {"张三",18,80 }, {"李四",19,60 }, {"王五",20,70 } }; 结构体数组元素的成员可以修改 比如 arr[1].name="赵六"; 李四就被改为赵六了 for (int i = 0; i < 3; i++) { cout << "姓名:" << arr[i].name << " 年龄:" << arr[i].age << " 分数:" << arr[i].score << endl; } system("pause"); return 0; }
示例:
#include<iostream> #include<string> using namespace std; //结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; int main() { //结构体数组 struct student arr[3]= { {"张三",18,80 }, {"李四",19,60 }, {"王五",20,70 } }; for (int i = 0; i < 3; i++) { cout << "姓名:" << arr[i].name << " 年龄:" << arr[i].age << " 分数:" << arr[i].score << endl; } system("pause"); return 0; }
作用:通过指针访问结构体中的成员
->
可以通过结构体指针访问结构体属性//结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; int main() { struct student stu = { "张三",18,100, }; struct可省略 struct student * p = &stu; struct可省略 p->score = 80; //指针通过 -> 操作符可以访问成员 cout << "姓名:" << p->name << " 年龄:" << p->age << " 分数:" << p->score << endl; system("pause"); return 0; }
struct student * p = &stu; p->score = 80; //指针通过 -> 操作符可以访问成员
注意: 结构体指针,如果想要操作指针指向的内存中的值,使用"->",比如p->score=100 struct student stu1={"张三",18,100}; struct student * p = &stu1; p->score=80; 若不是结构体指针,则*p=??? int a=10; int *p=&a; *p=8;
示例:
//结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; int main() { struct student stu = { "张三",18,100, }; struct student * p = &stu; p->score = 80; //指针通过 -> 操作符可以访问成员 cout << "姓名:" << p->name << " 年龄:" << p->age << " 分数:" << p->score << endl; system("pause"); return 0; }
总结:结构体指针可以通过 -> 操作符 来访问结构体中的成员
作用: 结构体中的成员可以是另一个结构体
例如:每个老师辅导一个学员,一个老师的结构体中,记录一个学生的结构体
示例:
//学生结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; //教师结构体定义 struct teacher { //成员列表 int id; //职工编号 string name; //教师姓名 int age; //教师年龄 struct student stu; //子结构体 学生 }; int main() { struct teacher t1; t1.id = 10000; t1.name = "老王"; t1.age = 40; t1.stu.name = "张三"; t1.stu.age = 18; t1.stu.score = 100; cout << "教师 职工编号: " << t1.id << " 姓名: " << t1.name << " 年龄: " << t1.age << endl; cout << "辅导学员 姓名: " << t1.stu.name << " 年龄:" << t1.stu.age << " 考试分数: " << t1.stu.score << endl; system("pause"); return 0; }
总结:在结构体中可以定义另一个结构体作为成员,用来解决实际问题
作用:将结构体作为参数向函数中传递
传递方式有两种:
示例:
//学生结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; //值传递 void printStudent(student stu ) { stu.age = 28; cout << "子函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl; } //地址传递 void printStudent2(student *stu) { stu->age = 28; cout << "子函数中 姓名:" << stu->name << " 年龄: " << stu->age << " 分数:" << stu->score << endl; } int main() { student stu = { "张三",18,100}; //值传递 printStudent(stu); cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl; cout << endl; //地址传递 printStudent2(&stu); cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl; system("pause"); return 0; } 值传递中,主函数中 年龄是100,没变 地址传递中,主函数中 年龄是28,变了
总结:如果不想修改主函数中的数据,用值传递,反之用地址传递
作用:用const来防止误操作
注意:
使用一个函数来打印信息:
如果是值传递,每次传递都会新创建一个内存空间,然后将主函数中的stu复制一份给过去,这样浪费内存空间;
如果使用地址传递,不管结构体中有多少成员变量,只占4个字节,因为不管什么类型的指针,都只占4个字节。
但是这样会有一个麻烦:如果该函数中修改了成员变量的值,main函数中的相应的值也会改变。
为了避免这样的问题发生,函数参数加上const。这样在打印函数中就无法修改成员变量的值了。
void printStudent(const student *stu) //加const防止函数体中的误操作 { //stu->age = 100; //操作失败,因为加了const修饰 cout << "姓名:" << stu->name << " 年龄:" << stu->age << " 分数:" << stu->score << endl; }
示例:
//学生结构体定义 struct student { //成员列表 string name; //姓名 int age; //年龄 int score; //分数 }; //const使用场景 void printStudent(const student *stu) //加const防止函数体中的误操作 { //stu->age = 100; //操作失败,因为加了const修饰 cout << "姓名:" << stu->name << " 年龄:" << stu->age << " 分数:" << stu->score << endl; } int main() { student stu = { "张三",18,100 }; printStudent(&stu); system("pause"); return 0; }
注:本文从黑马程序员C++教学讲义转载+部分个人改善