结论:(不妨假设$p_{1}<p_{n}$)$\{p_{i}\}$合法当且仅当$\exists 1\le i\le n-1$,使得$p_{1}\ge p_{i}$且$p_{i+1}\ge p_{n}$
充分性——
为了方便,在删除一个元素后,$i$和$n$也随之变化(指向原来的元素,若删除$p_{i}$或$p_{n}$会补充说明)
对$\{p_{1},p_{2},...,p_{i}\}$这个子问题不断删除(直至不能删除),显然最终必然是$p_{1}<p_{2}<...<p_{i}$(否则一定仍可以操作),同理可得后者也为$p_{i+1}>p_{i+2}>...>p_{n}$
如果$i\ge 3$或$i\le n-3$,不妨再删除$p_{i}$(并将$i$减小1)或删除$p_{i+1}$,重复此过程后即有$n-2\le i\le 2$,进而对$i$和$n$分类讨论,最终序列一定形如$\{2,1\},\{2,3,1\},\{1,3,2\}$或$\{2,1,4,3\}$,也即合法
必要性——
对$n$从小到大归纳,$n=2$时显然成立(取$i=1$即可)
考虑$n=k+1$时,反证若存在排列$\{p_{i}\}$合法但不存在$i$满足上述条件,假设其第一次删除的是$p_{i}$,由归纳假设删除后要存在$i$(满足上述条件),显然必然是$p_{1}\le p_{i-1}$且$p_{i+1}\ge p_{n}$
进而对$p_{i}$的值分类讨论,不难发现删除前也存在$i$,与假设矛盾,即得证
(类似地,在$p_{1}>p_{n}$时即要求$\exists 1\le i\le n-1$,使得$p_{1}\le p_{i}$且$p_{i+1}\le p_{n}$)
由于已经确定$p_{1}$,考虑枚举$p_{n}$(不妨仍假设$p_{1}<p_{n}$),并统计不合法的方案数——
将数分为三类,即$[1,p_{1}],(p_{1},p_{n}),[p_{n},n]$,那么即要求第三类数不接在第一类数的后面
初始序列中即有一个第一类数和第三类数(由于$n\ge 3$,这两个数一定不会相邻),并依次插入第2类、第1类和第3类数(注意顺序,并且要考虑初始的数),显然方案即
$$
(p_{n}-p_{1}-1)!\frac{(p_{n}-3)!}{(p_{n}-p_{1}-2)!}\frac{(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}=(p_{n}-p_{1}-1)\frac{(p_{n}-3)!(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}
$$
该式可以$o(1)$计算,但由于要枚举$p_{n}$,时间复杂度为$o(tn)$,无法通过
进一步的,枚举$k=p_{n}-p_{1}-2$,原式即
$$
(n-p_{1}-2)!\sum_{k=0}^{n-p_{1}-2}\frac{(k+1)(k+p_{1}-1)!}{k!}\\=(n-p_{1}-2)!\left(\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{k!}+\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{(k-1)!}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}-1}+p_{1}!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!{n-2\choose p_{1}}+p_{1}!{n-2\choose p_{1}+1}\right)
$$
类似地,可以得到$p_{n}<p_{1}$的情况,答案为
$$
(p_{1}-3)!\left((n-p_{1})!{n-2\choose n-p_{1}+1}+(n-p_{1}+1)!{n-2\choose n-p_{1}+2}\right)
$$
时间复杂度为$o(t)$,可以通过
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define N 1000005 4 #define mod 998244353 5 #define ll long long 6 int t,n,x,ans,fac[N],inv[N]; 7 int C(int n,int m){ 8 return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod; 9 } 10 int main(){ 11 fac[0]=inv[0]=inv[1]=1; 12 for(int i=1;i<N;i++)fac[i]=(ll)fac[i-1]*i%mod; 13 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod; 14 for(int i=1;i<N;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod; 15 scanf("%d",&t); 16 while (t--){ 17 scanf("%d%d",&n,&x); 18 ans=fac[n-1]; 19 if (x+2<=n){ 20 int s=((ll)fac[x-1]*C(n-2,x)+(ll)fac[x]*C(n-2,x+1))%mod; 21 ans=(ans-(ll)fac[n-x-2]*s%mod+mod)%mod; 22 } 23 if (x>=3){ 24 int s=((ll)fac[n-x]*C(n-2,n-x+1)+(ll)fac[n-x+1]*C(n-2,n-x+2))%mod; 25 ans=(ans-(ll)fac[x-3]*s%mod+mod)%mod; 26 } 27 printf("%d\n",ans); 28 } 29 return 0; 30 }View Code