Java教程

深度学习之反向传播算法

本文主要是介绍深度学习之反向传播算法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

深度学习之反向传播算法

直观理解反向传播

反向传播算法是用来求那个复杂到爆的梯度的。

上一集中提到一点,13000维的梯度向量是难以想象的。换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。

如上图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。

我们来考虑一个还没有被训练好的网络。我们并不能直接改动这些激活值,只能改变权重和偏置值。但记住,我们想要输出层出现怎样的变动,还是有用的。

我们希望图像的最后分类结果是2,我们期望第3个输出值变大,其余输出值变小,并且变动的大小应该与现在值和目标值之间的差成正比。举个例子,增大数字2神经元的激活值,就应该‘比减少数字8神经元的激活值来得重要,因为后者已经很接近它的目标了。

进一步,就来关注数字2这个神经元,想让它的激活值变大,而这个激活值是把前一层所有激活值的加权和加上偏置值。

所以要增加激活值,我们有3条路可以走,一增加偏置,二增加权重,或者三改变上一层的激活值。

先来看如何调整权重,各个权重它们的影响力各不相同,连接前一层最亮的神经元的权重,影响力也最大,因为这些权重与大的激活值相乘。增大这几个权重,对最终代价函数造成的影响,就比增大连接黯淡神经元的权重所造成的影响,要大上好多倍。

请记住,说到梯度下降的时候,我们并不只看每个参数是增大还是变小,我们还看改变哪个参数的性价比最大。

不过别忘了,从全局上看,只只不过是数字2的神经元所期待的变化,我们还需要最后一层其余的每个输出神经元,对于如何改变倒数第二层都有各自的想法。

我们会把数字2神经元的期待,和别的输出神经元的期待全部加起来,作为如何改变倒数第二层的指示。这些期待变化不仅是对应的权重的倍数,也是每个神经元激活值改变量的倍数。

我们对其他的训练样本,同样的过一遍反向传播,记录下每个样本想怎样修改权重和偏置,最后再去一个平均值。

这里一系列的权重偏置的平均微调大小,不严格地说,就是代价函数的负梯度,至少是其标量的倍数。

实际操作中,我们经常使用随机梯度下降法。

首先把训练样本打乱,然后分成很多组minibatch,每个minibatch就当包含了100个训练样本好了。然后你算出这个minibatch下降的一步,这不是代价函数真正的梯度,然而每个minibatch会给一个不错的近似,计算量会减轻不少。

反向传播的微积分原理

我们从一个最简单的网络讲起,每层只有一个神经元,图上这个网络就是由三个权重和三个偏置决定的,我们的目标是理解代价函数对这些变量有多敏感。这样我们就知道怎么调整这些变量,才能使代价函数下降的最快。

我们先来关注最后两个神经元,我们给最后一个神经元一个上标L,表示它处在第L层。

给定一个训练样本,我们把这个最终层激活值要接近的目标叫做y,y的值为0/1。那么这个简易网络对于单个训练样本的代价就等于(a(L)−y)2(a(L)−y)2。对于这个样本,我们把这个代价值标记为C0C0。

之前讲过,最终层的激活值公式:a(L)=σ(w(L)a(L−1)+b(L))a(L)=σ(w(L)a(L−1)+b(L))

换个标记方法:

z(L)=(w(L)a(L−1)+b(L))z(L)=(w(L)a(L−1)+b(L))

a(L)=σ(z(L))a(L)=σ(z(L))

整个流程就是这样的:

当然了,a(L−1)a(L−1)还可以再向上推一层,不过这不重要。

这些东西都是数字,我们可以想象,每个数字都对应数轴上的一个位置。我们第一个目标是来理解代价函数对权重w(L)w(L)的微小变化有多敏感。换句话说,求C0C0对w(L)w(L)的导数。

根据链式法则:

∂C0∂w(L)=∂z(L)∂w(L)∂a(L)∂z(L)∂C0∂a(L)∂C0∂a(L)=2(a(L)−y)∂a(L)∂z(L)=σ′(z(L))∂z(L)∂w(L)=a(L−1)∂C0∂w(L)=∂z(L)∂w(L)∂a(L)∂z(L)∂C0∂a(L)∂C0∂a(L)=2(a(L)−y)∂a(L)∂z(L)=σ′(z(L))∂z(L)∂w(L)=a(L−1)

所以

∂z(L)∂w(L)∂a(L)∂z(L)∂C0∂a(L)=a(L−1)σ′(z(L))2(a(L)−y)∂z(L)∂w(L)∂a(L)∂z(L)∂C0∂a(L)=a(L−1)σ′(z(L))2(a(L)−y)

∂C∂w(L)=1n∑k=0n−1∂Ck∂w(L)∂C∂w(L)=1n∑k=0n−1∂Ck∂w(L)

当然了,对偏置求导数也是同样的步骤。

∂C0∂b(L)=∂z(L)∂b(L)∂a(L)∂z(L)∂C0∂a(L)=1σ′(z(L))2(a(L)−y)∂C0∂b(L)=∂z(L)∂b(L)∂a(L)∂z(L)∂C0∂a(L)=1σ′(z(L))2(a(L)−y)

到这里,我们可以看每层不止一个神经元的情况了。

参考链接:

  • Vedio
  • Blog

个性签名:时间会解决一切

这篇关于深度学习之反向传播算法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!