// 1. `ctl`,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 2. `COUNT_BITS`,`Integer.SIZE`为32,所以`COUNT_BITS`为29 private static final int COUNT_BITS = Integer.SIZE - 3; // 3. `CAPACITY`,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1 private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits // 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl // 5. `runStateOf()`,获取线程池状态,通过按位与操作,低29位将全部变成0 private static int runStateOf(int c) { return c & ~CAPACITY; } // 6. `workerCountOf()`,获取线程池worker数量,通过按位与操作,高3位将全部变成0 private static int workerCountOf(int c) { return c & CAPACITY; } // 7. `ctlOf()`,根据线程池状态和线程池worker数量,生成ctl值 private static int ctlOf(int rs, int wc) { return rs | wc; } /* * Bit field accessors that don't require unpacking ctl. * These depend on the bit layout and on workerCount being never negative. */ // 8. `runStateLessThan()`,线程池状态小于xx private static boolean runStateLessThan(int c, int s) { return c < s; } // 9. `runStateAtLeast()`,线程池状态大于等于xx private static boolean runStateAtLeast(int c, int s) { return c >= s; }
1
ctl
,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量
4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
在下面就是对ctl的一些操作了runStateOf取他的状态,workerCountOf计算有多少个线程正在工作,还有第8和第9个runStateLessThan、runStateAtLeast是帮助写代码的一些东西。
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { // 基本类型参数校验 if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); // 空指针校验 if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; // 根据传入参数`unit`和`keepAliveTime`,将存活时间转换为纳秒存到变量`keepAliveTime `中 this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
这个work他本身是Runnable同时又是AQS
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; // 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); } // 省略代码... }
成员变量:
- final Thread thread; ------线程
- Runnable firstTask; -----任务
- volatile long completedTasks; -----任务
这个work类,简单的你就可以把它当成线程类,然后这个线程类执行的是你自己的任务就行了。
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. */ int c = ctl.get(); // worker数量比核心线程数小,直接创建worker执行任务 if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } // worker数量超过核心线程数,任务直接进入队列 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); // 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。 // 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。 if (! isRunning(recheck) && remove(command)) reject(command); // 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0 else if (workerCountOf(recheck) == 0) addWorker(null, false); } // 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。 // 这儿有3点需要注意: // 1. 线程池不是运行状态时,addWorker内部会判断线程池状态 // 2. addWorker第2个参数表示是否创建核心线程 // 3. addWorker返回false,则说明任务执行失败,需要执行reject操作 else if (!addWorker(command, false)) reject(command);
execute()方法
第一步:核心线程数不够,启动核心的;
第二步:核心线程够了加队列;
第三部:核心线程和队列这两个都满了,非核心线程;
addWorker就是添加线程,线程是要存到容器里
private boolean addWorker(Runnable firstTask, boolean core) { retry: // 外层自旋 for (;;) { int c = ctl.get(); int rs = runStateOf(c); // 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价 // (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty()) // 1. 线程池状态大于SHUTDOWN时,直接返回false // 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false // 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false // Check if queue empty only if necessary. if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; // 内层自旋 for (;;) { int wc = workerCountOf(c); // worker数量超过容量,直接返回false if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; // 使用CAS的方式增加worker数量。 // 若增加成功,则直接跳出外层循环进入到第二部分 if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl // 线程池状态发生变化,对外层循环进行自旋 if (runStateOf(c) != rs) continue retry; // 其他情况,直接内层循环进行自旋即可 // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; // worker的添加必须是串行的,因此需要加锁 mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. // 这儿需要重新检查线程池状态 int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { // worker已经调用过了start()方法,则不再创建worker if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); // worker创建并添加到workers成功 workers.add(w); // 更新`largestPoolSize`变量 int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } // 启动worker线程 if (workerAdded) { t.start(); workerStarted = true; } } } finally { // worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作 if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
下面我们大致读一下,他这个里面做了两步,整个addWorker源码做了两部,上面两个for循环只是做了第一步,这个就干了一件事儿,把worker的数量加1,添加一个worker。数量在32位的那个29位里面,而且是在多线程的情况下加1,所以他进行了两个死循环干这个事儿外层死循环套内层死循环,上来先拿状态值,然后进行了一堆的判断,如果状态值不符合的话就return false,这个状态值加不进去,什么时候这个状态值不符合啊,就是大于shutdown,说明你已经shutdown了,或者去除上面这些状态之外,所有的状态都可以往里加线程。加线程又是一个死循环,首先计算当前的wc线程数是不是超过容量了,超过容量就别加了,否则用cas的方式加,如果加成功了说明第一步完成了,就retry把整个全都break掉,外层循环内层循环一下全都跳出来了,如果没加成功就get,get完了之后呢重新处理,continue retry,相当于前面在不断的试,一直试到我们把这个数加到1为止。
然后,后面才是真真正正的启动这个work,new一个work,这个work被new出来之后启动线程,这个work代表一个线程,其实这个work类里面有一个线程,加锁,是在一个容器里面,多线程的状态是一定要加锁的,锁定后检查线程池的状态,为什么要检查,因为中间可能被其他线程干掉过,看这个状态是不是shutdown了等等,如果满足往里加的条件,加进去,加完这个线程后启动开始运行,这是addWorker的一个大体逻辑。
runwork是真真正正启动线程之后是怎么样去执行这个任务的
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; // 调用unlock()是为了让外部可以中断 w.unlock(); // allow interrupts // 这个变量用于判断是否进入过自旋(while循环) boolean completedAbruptly = true; try { // 这儿是自旋 // 1. 如果firstTask不为null,则执行firstTask; // 2. 如果firstTask为null,则调用getTask()从队列获取任务。 // 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待 while (task != null || (task = getTask()) != null) { // 这儿对worker进行加锁,是为了达到下面的目的 // 1. 降低锁范围,提升性能 // 2. 保证每个worker执行的任务是串行的 w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt // 如果线程池正在停止,则对当前线程进行中断操作 if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); // 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。 // 这两个方法在当前类里面为空实现。 try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { // 帮助gc task = null; // 已完成任务数加一 w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { // 自旋操作被退出,说明线程池正在结束 processWorkerExit(w, completedAbruptly); } }
runwork是真真正正启动线程之后是怎么样去执行这个任务的,同样的,加锁。这个比较好玩的是这个work是从AbstractQueuedSynchronizer继承出来的同时实现了Runnable,说明work可以放在线程里运行,与此同时他本身就是一把锁,就可以做同步,另外,他是可以被线程执行的一个任务.
为什么它本身就是一把锁啊,这个work可以认为是等着执行的一个工人,是好多个任务都可以往里面去扔内容的,也就是说会有多线程去访问这个对象的,多线程访问这个对象的时候他干脆就给自己做成了一把锁,就不要自己去定义一个lock了,所以你需要往这个work里面扔任务的时候,指定我这个线程就是你执行的这个线程的时候,好,通过work自己去lock就可以了,完全没必要再去new别的lock,所以运行work的时候就先lock住,你要run他就得lock住才能执行,不然别的线程有可能把这个work给占了, 下面又是一堆的执行,执行完了之后unlock出来,执行完了之后++ 。