Java教程

排序基础02:插入排序法

本文主要是介绍排序基础02:插入排序法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

实现泛型约束插入排序法

import java.util.Arrays;

public class Algorithm {

    public static void main(String[] args) {

        Integer[] arr = {2, 5, 6, 8, 1, 3};
        InsertionSort.sort(arr);

        System.out.println(Arrays.toString(arr));
    }
}

class InsertionSort {

    private InsertionSort() {}

    public static <E extends Comparable> void sort(E[] arr) {

        for (int i = 1; i < arr.length; i++) {

            /**
             * 循环不变量:arr[i...n)未排序,而arr[0...i)已排序
             * arr[i]从后向前依次和arr[0...i)中的元素进行对比,谁比它大就和谁互换位置,直到前面的元素都比它小
             * 和选择排序不同的是,选择排序每次排好的arr[0...i)不会再变动,而插入排序会一直变动
             */
            for (int j = i; j > 0; j--) {
                if (arr[j].compareTo(arr[j - 1]) < 0) {

                    E tem;
                    tem = arr[j];
                    arr[j] = arr[j - 1];
                    arr[j - 1] = tem;
                }

                /**
                 * 如果arr[i - 1]已经比arr[i]小了,说明左边所有数都比arr[i]小,就不用再往前比较了
                 */
                else {
                    break;
                }
            }

//            /**
//             * if()语句判断的条件可以一同写进for()循环,省去了break语句的跳转,简化代码
//             */
//            for (int j = i; j > 0 && arr[j].compareTo(arr[j - 1]) < 0; j--) {
//
//                E tem;
//                tem = arr[j];
//                arr[j] = arr[j - 1];
//                arr[j - 1] = tem;
//            }
        }
    }
}

优化插入排序法

import java.util.Arrays;

public class Algorithm {

    public static void main(String[] args) {

        Integer[] arr = {2, 5, 6, 8, 1, 3};
        InsertionSortBetter.sort(arr);

        System.out.println(Arrays.toString(arr));
    }
}

class InsertionSortBetter {

    private InsertionSortBetter() {}

    public static <E extends Comparable> void sort(E[] arr) {

        for (int i = 1; i < arr.length; i++) {

            /**
             * 循环不变量:arr[i...n)未排序,而arr[0...i)已排序
             * 将arr[i]先暂存起来,从后向前依次和arr[0...i)中的元素进行对比,谁比它大谁就往后挪一位,直到前面的元素都比
             * 它小,然后将arr[i]放在j这个位置
             */
            E tem = arr[i];
            int j;

            for (j = i; j > 0 && tem.compareTo(arr[j - 1]) < 0; j--) {

                arr[j] = arr[j - 1];
            }

            arr[j] = tem;
        }
    }
}

选择排序法和插入排序法的性能比较

插入排序法的复杂度也是O(n^2)

但是和选择排序相比,当一个数组本身的有序程序很高的时候,插入排序可能只要将arr[i]和arr[i + 1]对比一次就可以结束内循环,此时插入排序法的复杂度会降到O(n);而选择排序却一定要遍历所有arr[i...n]所有的元素才能确保找到最小值

所以当数组的有序程度较高时,推荐使用插入排序

import java.util.Arrays;
import java.util.Random;

public class Algorithm {

    public static void main(String[] args) {

        Integer[] testScale = {10000, 100000};

        for (Integer n : testScale) {

            /**
             * 测试随机数组排序性能
             */
            Integer[] randomArr = ArrayGenerator.generatorRandomArray(n, n);

            /**
             * 测试有序数组排序性能
             */
            Integer[] sortedArr = ArrayGenerator.generatorSortedArray(n, n);

            /**
             * Arrays.copyOf()方法复制数值的数值,为了测试更具有对比性
             */
            Integer[] arr1 = Arrays.copyOf(randomArr, randomArr.length);
            Integer[] arr2 = Arrays.copyOf(randomArr, randomArr.length);

            Integer[] arr3 = Arrays.copyOf(sortedArr, sortedArr.length);
            Integer[] arr4 = Arrays.copyOf(sortedArr, sortedArr.length);


            System.out.println("测试随机数组排序性能");
            System.out.println();

            Verify.testTime("SelectionSort", randomArr);
            Verify.testTime("InsertionSort", arr1);
            Verify.testTime("InsertionSortBetter", arr2);

            System.out.println();

            System.out.println("测试有序数组排序性能");
            System.out.println();

            Verify.testTime("SelectionSort", sortedArr);
            Verify.testTime("InsertionSort", arr3);
            Verify.testTime("InsertionSortBetter", arr4);

            System.out.println();
        }
    }
}

class InsertionSort {

    private InsertionSort() {}

    public static <E extends Comparable> void sort(E[] arr) {

        for (int i = 1; i < arr.length; i++) {

            for (int j = i; j > 0; j--) {
                if (arr[j].compareTo(arr[j - 1]) < 0) {

                    E tem;
                    tem = arr[j];
                    arr[j] = arr[j - 1];
                    arr[j - 1] = tem;
                }

                else {
                    break;
                }
            }
        }
    }
}

class InsertionSortBetter {

    private InsertionSortBetter() {}

    public static <E extends Comparable> void sort(E[] arr) {

        for (int i = 1; i < arr.length; i++) {

            E tem = arr[i];
            int j;

            for (j = i; j > 0 && tem.compareTo(arr[j - 1]) < 0; j--) {

                arr[j] = arr[j - 1];
            }

            arr[j] = tem;
        }
    }
}

class SelectionSort {

    private SelectionSort(){}

    public static<E extends Comparable<E>> void sort(E[] arr){

        for (int i = 0; i < arr.length - 1; i++) {

            int minIndex = i;
            for (int j = i + 1; j < arr.length; j++) {

                if (arr[j].compareTo(arr[minIndex]) < 0) {

                    minIndex = j;
                }
            }

            if (i != minIndex) {

                E tem;
                tem = arr[minIndex];
                arr[minIndex] = arr[i];
                arr[i] = tem;
            }
        }
    }
}

class ArrayGenerator {

    private ArrayGenerator (){}

    public static Integer[] generatorRandomArray (Integer n, Integer maxBound){

        Integer[] arr = new Integer[n];

        Random random = new Random();

        for (int i = 0; i < n; i++) {

            arr[i] = random.nextInt(maxBound);
        }

        return arr;
    }

    public static Integer[] generatorSortedArray (Integer n, Integer maxBound){

        Integer[] arr = new Integer[n];

        for (int i = 0; i < n; i++) {

            arr[i] = i;
        }

        return arr;
    }
}

class Verify {

    private Verify (){}

    public static<E extends Comparable<E>> boolean isSorted(E[] arr){

        for (int i = 0; i < arr.length - 1; i++) {
            if (arr[i].compareTo(arr[i + 1]) > 0) {
                return false;
            }
        }

        return true;
    }

    public static<E extends Comparable<E>> void testTime(String AlgorithmName, E[] arr) {

        long startTime = System.nanoTime();

        if (AlgorithmName.equals("SelectionSort")){
            SelectionSort.sort(arr);
        }

        if (AlgorithmName.equals("InsertionSort")) {
            InsertionSort.sort(arr);
        }

        if (AlgorithmName.equals("InsertionSortBetter")) {
            InsertionSortBetter.sort(arr);
        }

        long endTime = System.nanoTime();

        if (!Verify.isSorted(arr)){
            throw new RuntimeException(AlgorithmName + "算法排序失败!");
        }

        System.out.println(String.format("%s算法,测试用例为%d,执行时间:%f秒", AlgorithmName, arr.length, (endTime - startTime) / 1000000000.0));
    }
}
这篇关于排序基础02:插入排序法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!