C/C++教程

pytorch_预训练Se_resnet50_自定义类别数量_源码分享

本文主要是介绍pytorch_预训练Se_resnet50_自定义类别数量_源码分享,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

系列文章目录

Imagenet的预训练Se_resnet50是1000个类别,根据笔者的经验,预训练的网络结构是不能更改的,改了效果就不行,只能在末尾增加一个(1000,classes)的全连接层,中间还有一层dropout,这样效果是最好的。

源码

注意:最好的网络结构在下面被命名为了fb_se_resnet50,直接调用这个函数即可。

"""
ResNet code gently borrowed from
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
"""
from __future__ import print_function, division, absolute_import

from abc import ABC
from collections import OrderedDict
import math

import torch
import torch.nn as nn
from torch.utils import model_zoo

__all__ = ['SENet', 'fb_SENet', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152', 'fb_se_resnet101',
           'se_resnext50_32x4d', 'se_resnext101_32x4d', 'fb_se_resnet50', 'fb_se_resnext50_32x4d', 'at_se_resnet50']

pretrained_settings = {
    'senet154': {
        True: {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnet50': {
        True: {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnet101': {
        True: {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnet152': {
        True: {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnext50_32x4d': {
        True: {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
    'se_resnext101_32x4d': {
        True: {
            'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth',
            'input_space': 'RGB',
            'input_size': [3, 224, 224],
            'input_range': [0, 1],
            'mean': [0.485, 0.456, 0.406],
            'std': [0.229, 0.224, 0.225],
            'num_classes': 1000
        }
    },
}


class SEModule(nn.Module):

    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1,
                             padding=0)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1,
                             padding=0)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.avg_pool(x)
        # debug = 1
        avg_out = self.fc2(self.relu1(self.fc1(x)))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1

        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)


class BasicBlock(nn.Module):
    expansion = 1
    __constants__ = ['downsample']

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    """
    Base class for bottlenecks that implements `forward()` method.
    """

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = self.se_module(out) + residual
        out = self.relu(out)

        return out


class Def_Bottleneck(nn.Module):
    expansion = 4
    __constants__ = ['downsample']

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups

        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class SEBottleneck(Bottleneck):
    """
    Bottleneck for SENet154.
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None):
        super(SEBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes * 2)
        self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3,
                               stride=stride, padding=1, groups=groups,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes * 4)
        self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SEResNetBottleneck(Bottleneck):
    """
    ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
    implementation and uses `stride=stride` in `conv1` and not in `conv2`
    (the latter is used in the torchvision implementation of ResNet).
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None):
        super(SEResNetBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False,
                               stride=stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1,
                               groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SEResNeXtBottleneck(Bottleneck):
    """
    ResNeXt bottleneck type C with a Squeeze-and-Excitation module.
    """
    expansion = 4

    def __init__(self, inplanes, planes, groups, reduction, stride=1,
                 downsample=None, base_width=4):
        super(SEResNeXtBottleneck, self).__init__()
        width = math.floor(planes * (base_width / 64)) * groups
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False,
                               stride=1)
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
                               padding=1, groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se_module = SEModule(planes * 4, reduction=reduction)
        self.downsample = downsample
        self.stride = stride


class SENet(nn.Module):

    def __init__(self, block, layers, groups, reduction, dropout_p=0.5,
                 inplanes=128, input_3x3=True, downsample_kernel_size=3,
                 downsample_padding=1, num_classes=1000, zero_init_residual=False):
        """
        Parameters
        ----------
        block (nn.Module): Bottleneck class.
            - For SENet154: SEBottleneck
            - For SE-ResNet models: SEResNetBottleneck
            - For SE-ResNeXt models:  SEResNeXtBottleneck
        layers (list of ints): Number of residual blocks for 4 layers of the
            network (layer1...layer4).
        groups (int): Number of groups for the 3x3 convolution in each
            bottleneck block.
            - For SENet154: 64
            - For SE-ResNet models: 1
            - For SE-ResNeXt models:  32
        reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
            - For all models: 16
        dropout_p (float or None): Drop probability for the Dropout layer.
            If `None` the Dropout layer is not used.
            - For SENet154: 0.2
            - For SE-ResNet models: None
            - For SE-ResNeXt models: None
        inplanes (int):  Number of input channels for layer1.
            - For SENet154: 128
            - For SE-ResNet models: 64
            - For SE-ResNeXt models: 64
        input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
            a single 7x7 convolution in layer0.
            - For SENet154: True
            - For SE-ResNet models: False
            - For SE-ResNeXt models: False
        downsample_kernel_size (int): Kernel size for downsampling convolutions
            in layer2, layer3 and layer4.
            - For SENet154: 3
            - For SE-ResNet models: 1
            - For SE-ResNeXt models: 1
        downsample_padding (int): Padding for downsampling convolutions in
            layer2, layer3 and layer4.
            - For SENet154: 1
            - For SE-ResNet models: 0
            - For SE-ResNeXt models: 0
        num_classes (int): Number of outputs in `last_linear` layer.
            - For all models: 1000
        """
        super(SENet, self).__init__()
        self.inplanes = inplanes
        if input_3x3:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
                                    bias=False)),
                ('bn1', nn.BatchNorm2d(64)),
                ('relu1', nn.ReLU(inplace=True)),
                ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn2', nn.BatchNorm2d(64)),
                ('relu2', nn.ReLU(inplace=True)),
                ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn3', nn.BatchNorm2d(inplanes)),
                ('relu3', nn.ReLU(inplace=True)),
            ]
        else:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
                                    padding=3, bias=False)),
                ('bn1', nn.BatchNorm2d(inplanes)),
                ('relu1', nn.ReLU(inplace=True)),
            ]
        # To preserve compatibility with Caffe weights `ceil_mode=True`
        # is used instead of `padding=1`.
        layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
                                                    ceil_mode=True)))
        self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
        self.layer1 = self._make_layer(
            block,
            planes=64,
            blocks=layers[0],
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=1,
            downsample_padding=0
        )
        self.layer2 = self._make_layer(
            block,
            planes=128,
            blocks=layers[1],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer3 = self._make_layer(
            block,
            planes=256,
            blocks=layers[2],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer4 = self._make_layer(
            block,
            planes=512,
            blocks=layers[3],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.avg_pool = nn.AvgPool2d(7, stride=1)
        self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
        self.last_linear = nn.Linear(512 * block.expansion, 1000)

        self.bottleneck = nn.Sequential(
            nn.Linear(1000, 1000),
            nn.BatchNorm1d(1000),
            nn.ReLU(),
            nn.Dropout(0.5)
        )
        self.bottleneck[0].weight.data.normal_(0, 0.005)
        self.bottleneck[0].bias.data.fill_(0.1)
        self.head = nn.Sequential(
            nn.Linear(1000, 4),
            # nn.ReLU(),
            # nn.Dropout(0.5),
            # nn.Linear(512, 4)
        )
        # self.fc = nn.Linear(512, num_classes)
        for dep in range(1):
            self.head[dep * 1].weight.data.normal_(0, 0.01)
            self.head[dep * 1].bias.data.fill_(0.0)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Def_Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
                    downsample_kernel_size=1, downsample_padding=0):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=downsample_kernel_size, stride=stride,
                          padding=downsample_padding, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, groups, reduction, stride,
                            downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups, reduction))

        return nn.Sequential(*layers)

    def features(self, x):
        x = self.layer0(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x

    def logits(self, x):
        x = self.avg_pool(x)
        if self.dropout is not None:
            x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.last_linear(x)
        x = self.bottleneck(x)
        x = self.head(x)
        return x

    def forward(self, x):
        x = self.features(x)
        x = self.logits(x)
        return x


class fb_SENet(nn.Module):

    def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
                 inplanes=128, input_3x3=True, downsample_kernel_size=3,
                 downsample_padding=1, num_classes=1000):

        super(fb_SENet, self).__init__()
        self.inplanes = inplanes
        if input_3x3:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
                                    bias=False)),
                ('bn1', nn.BatchNorm2d(64)),
                ('relu1', nn.ReLU(inplace=True)),
                ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn2', nn.BatchNorm2d(64)),
                ('relu2', nn.ReLU(inplace=True)),
                ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn3', nn.BatchNorm2d(inplanes)),
                ('relu3', nn.ReLU(inplace=True)),
            ]
        else:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
                                    padding=3, bias=False)),
                ('bn1', nn.BatchNorm2d(inplanes)),
                ('relu1', nn.ReLU(inplace=True)),
            ]
        # To preserve compatibility with Caffe weights `ceil_mode=True`
        # is used instead of `padding=1`.
        layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
                                                    ceil_mode=True)))
        self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
        self.layer1 = self._make_layer(
            block,
            planes=64,
            blocks=layers[0],
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=1,
            downsample_padding=0
        )
        self.layer2 = self._make_layer(
            block,
            planes=128,
            blocks=layers[1],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer3 = self._make_layer(
            block,
            planes=256,
            blocks=layers[2],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer4 = self._make_layer(
            block,
            planes=512,
            blocks=layers[3],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.avg_pool = nn.AvgPool2d(7, stride=1)
        self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
        self.last_linear = nn.Linear(512 * block.expansion, 1000)
        self.last_linear2 = nn.Linear(1000, 4)
        self.last_linear2.weight.data.normal_(0, 0.01)
        self.last_linear2.bias.data.fill_(0.0)

    def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
                    downsample_kernel_size=1, downsample_padding=0):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=downsample_kernel_size, stride=stride,
                          padding=downsample_padding, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, groups, reduction, stride,
                            downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups, reduction))

        return nn.Sequential(*layers)

    def features(self, x):
        x = self.layer0(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x

    def logits(self, x):
        x = self.avg_pool(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.last_linear(x)
        # feature = x
        # x = self.relu(x)
        x = self.dropout(x)
        x = self.last_linear2(x)
        # x = self.dropout(x)
        # x = self.last_linear3(x)
        return x

    def forward(self, x):
        x = self.features(x)
        x = self.logits(x)
        return x


class Attention_SENet(nn.Module):

    def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
                 inplanes=128, inplanes2=64, input_3x3=True, downsample_kernel_size=3,
                 downsample_padding=1, num_classes=1000, norm_layer=None, ):

        super(Attention_SENet, self).__init__()
        self.inplanes = inplanes
        self.inplanes2 = inplanes2
        if input_3x3:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
                                    bias=False)),
                ('bn1', nn.BatchNorm2d(64)),
                ('relu1', nn.ReLU(inplace=True)),
                ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn2', nn.BatchNorm2d(64)),
                ('relu2', nn.ReLU(inplace=True)),
                ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn3', nn.BatchNorm2d(inplanes)),
                ('relu3', nn.ReLU(inplace=True)),
            ]
        else:
            layer0_modules = [
                ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
                                    padding=3, bias=False)),
                ('bn1', nn.BatchNorm2d(inplanes)),
                ('relu1', nn.ReLU(inplace=True)),
            ]
        # To preserve compatibility with Caffe weights `ceil_mode=True`
        # is used instead of `padding=1`.
        layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
                                                    ceil_mode=True)))
        self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
        self.layer1 = self._make_layer(
            block,
            planes=64,
            blocks=layers[0],
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=1,
            downsample_padding=0
        )
        self.layer2 = self._make_layer(
            block,
            planes=128,
            blocks=layers[1],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer3 = self._make_layer(
            block,
            planes=256,
            blocks=layers[2],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        self.layer4 = self._make_layer(
            block,
            planes=512,
            blocks=layers[3],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding
        )
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.conv1 = nn.Conv2d(3, self.inplanes2, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.bn1 = norm_layer(self.inplanes2)
        self.relu = nn.ReLU(inplace=True)
        # 网络的第一层加入注意力机制
        self.ca = ChannelAttention(self.inplanes2)
        self.sa = SpatialAttention()
        # 网络的卷积层的最后一层加入注意力机制
        self.ca1 = ChannelAttention(2048)
        self.sa1 = SpatialAttention()
        self.avg_pool = nn.AvgPool2d(7, stride=1)
        self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
        self.last_linear = nn.Linear(512 * block.expansion, 1000)
        self.relu = nn.ReLU()
        self.last_linear2 = nn.Linear(1000, 4)
        self.last_linear2.weight.data.normal_(0, 0.01)
        self.last_linear2.bias.data.fill_(0.0)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, groups, reduction, stride=1,
                    downsample_kernel_size=1, downsample_padding=0):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=downsample_kernel_size, stride=stride,
                          padding=downsample_padding, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, groups, reduction, stride,
                            downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups, reduction))

        return nn.Sequential(*layers)

    def features(self, x):
        x = self.layer0(x)
        x = self.ca(x) * x
        # x = self.sa1(x) * x
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x

    def logits(self, x):
        x = self.ca1(x) * x
        # x = self.sa1(x) * x
        x = self.avg_pool(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.last_linear(x)
        x = self.dropout(x)
        x = self.last_linear2(x)
        return x

    def forward(self, x):
        x = self.features(x)
        x = self.logits(x)
        return x


def initialize_pretrained_model(model, num_classes, settings):
    # assert num_classes == settings['num_classes'], \
    #     'num_classes should be {}, but is {}'.format(
    #         settings['num_classes'], num_classes)
    model.load_state_dict(model_zoo.load_url(settings['url']), strict=False)
    model.input_space = settings['input_space']
    model.input_size = settings['input_size']
    model.input_range = settings['input_range']
    model.mean = settings['mean']
    model.std = settings['std']


def senet154(num_classes=1000, pretrained='imagenet'):
    model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
                  dropout_p=0.2, num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['senet154'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def se_resnet50(num_classes=1000, pretrained='imagenet'):
    model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
                  dropout_p=None, inplanes=64, input_3x3=False,
                  downsample_kernel_size=1, downsample_padding=0,
                  num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnet50'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def fb_se_resnet50(num_classes=1000, pretrained='imagenet'):
    model = fb_SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
                     dropout_p=0.5, inplanes=64, input_3x3=False,
                     downsample_kernel_size=1, downsample_padding=0,
                     num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnet50'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def at_se_resnet50(num_classes=1000, pretrained='imagenet'):
    model = Attention_SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
                            dropout_p=0.5, inplanes=64, input_3x3=False,
                            downsample_kernel_size=1, downsample_padding=0,
                            num_classes=num_classes, norm_layer=None)
    if pretrained is not None:
        settings = pretrained_settings['se_resnet50'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def se_resnet101(num_classes=1000, pretrained='imagenet'):
    model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16,
                  dropout_p=None, inplanes=64, input_3x3=False,
                  downsample_kernel_size=1, downsample_padding=0,
                  num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnet101'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def fb_se_resnet101(num_classes=1000, pretrained='imagenet'):
    model = fb_SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16,
                     dropout_p=0.5, inplanes=64, input_3x3=False,
                     downsample_kernel_size=1, downsample_padding=0,
                     num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnet101'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def se_resnet152(num_classes=1000, pretrained='imagenet'):
    model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16,
                  dropout_p=None, inplanes=64, input_3x3=False,
                  downsample_kernel_size=1, downsample_padding=0,
                  num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnet152'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def fb_se_resnext50_32x4d(num_classes=1000, pretrained='imagenet'):
    model = fb_SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
                     dropout_p=0.5, inplanes=64, input_3x3=False,
                     downsample_kernel_size=1, downsample_padding=0,
                     num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnext50_32x4d'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def se_resnext50_32x4d(num_classes=1000, pretrained='imagenet'):
    model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
                  dropout_p=None, inplanes=64, input_3x3=False,
                  downsample_kernel_size=1, downsample_padding=0,
                  num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnext50_32x4d'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model


def se_resnext101_32x4d(num_classes=1000, pretrained='imagenet'):
    model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16,
                  dropout_p=None, inplanes=64, input_3x3=False,
                  downsample_kernel_size=1, downsample_padding=0,
                  num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['se_resnext101_32x4d'][pretrained]
        initialize_pretrained_model(model, num_classes, settings)
    return model

这篇关于pytorch_预训练Se_resnet50_自定义类别数量_源码分享的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!