电流模型观测器的传递函数:
d
Ψ
→
r
α
β
d
t
=
R
r
L
m
L
r
i
→
s
α
β
−
ω
b
r
Ψ
→
r
α
β
\frac{d\overrightarrow{\varPsi }_{r\alpha \beta}}{dt}=\frac{R_rL_m}{L_r}\overrightarrow{i}_{s\alpha \beta}-\omega _{br}\overrightarrow{\varPsi }_{r\alpha \beta}
dtdΨ
rαβ=LrRrLmi
sαβ−ωbrΨ
rαβ
开环电流模型推导:
d
Ψ
→
r
α
β
d
t
=
R
r
L
m
L
r
i
→
s
α
β
−
ω
b
r
Ψ
→
r
α
β
Ψ
→
r
α
β
=
R
r
L
m
L
r
p
+
ω
b
r
i
→
s
α
β
Ψ
^
→
r
α
β
Ψ
→
r
α
β
=
R
^
r
L
^
m
L
^
r
R
r
L
m
L
r
(
R
r
L
r
+
j
ω
s
)
(
R
^
r
L
^
r
+
j
ω
s
)
\text{开环电流模型推导:} \\ \frac{d\overrightarrow{\varPsi }_{r\alpha \beta}}{dt}=\frac{R_rL_m}{L_r}\overrightarrow{i}_{s\alpha \beta}-\omega _{br}\overrightarrow{\varPsi }_{r\alpha \beta} \\ \overrightarrow{\varPsi }_{r\alpha \beta}=\frac{\frac{R_rL_m}{L_r}}{p+\omega _{br}}\overrightarrow{i}_{s\alpha \beta} \\ \frac{\overrightarrow{\widehat{\varPsi }}_{r\alpha \beta}}{\overrightarrow{\varPsi }_{r\alpha \beta}}=\frac{\frac{\widehat{R}_r\widehat{L}_m}{\widehat{L}_r}}{\frac{R_rL_m}{L_r}}\frac{\left( \frac{R_r}{L_r}+j\omega _s \right)}{\left( \frac{\widehat{R}_r}{\widehat{L}_r}+j\omega _s \right)}
开环电流模型推导:dtdΨ
rαβ=LrRrLmi
sαβ−ωbrΨ
rαβΨ
rαβ=p+ωbrLrRrLmi
sαβΨ
rαβΨ
rαβ=LrRrLmL
rR
rL
m(L
rR
r+jωs)(LrRr+jωs)
简介磁场定向下,转差越大:磁链幅值受转子电阻影响较大;转差越大:磁链角度受转子电阻和互感影响较大;
电压模型转子磁链观测器:
电压模型推导:
u
→
s
α
β
=
R
s
i
→
s
α
β
+
d
Ψ
→
s
α
β
d
t
Ψ
→
s
α
β
=
∫
u
→
s
α
β
−
R
s
i
→
s
α
β
d
t
Ψ
→
s
α
β
=
σ
L
s
i
→
s
α
β
+
L
m
L
r
Ψ
→
r
α
β
Ψ
→
r
α
β
=
L
r
L
m
(
Ψ
→
s
α
β
−
σ
L
s
i
→
s
α
β
)
\text{电压模型推导:} \\ \overrightarrow{u}_{s\alpha \beta}=R_s\overrightarrow{i}_{s\alpha \beta}+\frac{\overrightarrow{d\varPsi }_{s\alpha \beta}}{dt} \\ \overrightarrow{\varPsi }_{s\alpha \beta}=\int{\overrightarrow{u}_{s\alpha \beta}-}R_s\overrightarrow{i}_{s\alpha \beta}dt \\ \overrightarrow{\varPsi }_{s\alpha \beta}=\sigma L_s\overrightarrow{i}_{s\alpha \beta}+\frac{L_m}{L_r}\overrightarrow{\varPsi }_{r\alpha \beta} \\ \overrightarrow{\varPsi }_{r\alpha \beta}=\frac{L_r}{L_m}\left( \overrightarrow{\varPsi }_{s\alpha \beta}-\sigma L_s\overrightarrow{i}_{s\alpha \beta} \right)
电压模型推导:u
sαβ=Rsi
sαβ+dtdΨ
sαβΨ
sαβ=∫u
sαβ−Rsi
sαβdtΨ
sαβ=σLsi
sαβ+LrLmΨ
rαβΨ
rαβ=LmLr(Ψ
sαβ−σLsi
sαβ) 无法推导得出电压模型的频率响应模型。
在低速区间时,电压模型受定子电阻影响较大;
文中多次提到Gopinath style flux observer.
个人感想和收获
作者是威斯康星的教授;
异步电机才存在间接磁场定向,根据异步电机转差的概念。
分析系统特征时,首先看能否转化为单输入单输出进行分析,采用经典控制进行分析较为简单;
复矢量模型下的电流和磁链模型推导:
u
→
s
α
β
=
R
s
i
→
s
α
β
+
d
Ψ
→
s
α
β
d
t
0
=
R
r
i
→
r
α
β
+
d
Ψ
→
r
α
β
d
t
−
j
ω
r
Ψ
→
r
α
β
Ψ
→
s
α
β
=
L
s
i
→
s
α
β
+
L
m
i
→
r
α
β
Ψ
→
r
α
β
=
L
m
i
→
s
α
β
+
L
r
i
→
r
α
β
\overrightarrow{u}_{s\alpha \beta}=R_s\overrightarrow{i}_{s\alpha \beta}+\frac{\overrightarrow{d\varPsi }_{s\alpha \beta}}{dt} \\ 0=R_r\overrightarrow{i}_{r\alpha \beta}+\frac{d\overrightarrow{\varPsi }_{r\alpha \beta}}{dt}-j\omega _r\overrightarrow{\varPsi }_{r\alpha \beta} \\ \overrightarrow{\varPsi }_{s\alpha \beta}=L_s\overrightarrow{i}_{s\alpha \beta}+L_m\overrightarrow{i}_{r\alpha \beta} \\ \overrightarrow{\varPsi }_{r\alpha \beta}=L_m\overrightarrow{i}_{s\alpha \beta}+L_r\overrightarrow{i}_{r\alpha \beta}
u
sαβ=Rsi
sαβ+dtdΨ
sαβ0=Rri
rαβ+dtdΨ
rαβ−jωrΨ
rαβΨ
sαβ=Lsi
sαβ+Lmi
rαβΨ
rαβ=Lmi
sαβ+Lri
rαβ 化简消去转子电流和定子磁链:
消去转子电流和定子磁链:
i
→
r
α
β
=
Ψ
→
r
α
β
−
L
m
i
→
s
α
β
L
r
带入定子磁链方程:
Ψ
→
s
α
β
=
L
s
i
→
s
α
β
+
L
m
(
Ψ
→
r
α
β
−
L
m
i
→
s
α
β
L
r
)
Ψ
→
s
α
β
=
σ
L
s
i
→
s
α
β
+
L
m
L
r
Ψ
→
r
α
β
\text{消去转子电流和定子磁链:} \\ \overrightarrow{i}_{r\alpha \beta}=\frac{\overrightarrow{\varPsi }_{r\alpha \beta}-L_m\overrightarrow{i}_{s\alpha \beta}}{L_r} \\ \text{带入定子磁链方程:} \\ \overrightarrow{\varPsi }_{s\alpha \beta}=L_s\overrightarrow{i}_{s\alpha \beta}+L_m\left( \frac{\overrightarrow{\varPsi }_{r\alpha \beta}-L_m\overrightarrow{i}_{s\alpha \beta}}{L_r} \right) \\ \overrightarrow{\varPsi }_{s\alpha \beta}=\sigma L_s\overrightarrow{i}_{s\alpha \beta}+\frac{L_m}{L_r}\overrightarrow{\varPsi }_{r\alpha \beta}
消去转子电流和定子磁链:i
rαβ=LrΨ
rαβ−Lmi
sαβ带入定子磁链方程:Ψ
sαβ=Lsi
sαβ+Lm(LrΨ
rαβ−Lmi
sαβ)Ψ
sαβ=σLsi
sαβ+LrLmΨ
rαβ
带入转子电压方程:
0
=
R
r
(
Ψ
→
r
α
β
−
L
m
i
→
s
α
β
L
r
)
+
d
Ψ
→
r
α
β
d
t
−
j
ω
r
Ψ
→
r
α
β
化简可得:
d
Ψ
→
r
α
β
d
t
=
R
r
L
m
L
r
i
→
s
α
β
−
ω
b
r
Ψ
→
r
α
β
其中:
ω
b
r
=
R
r
L
r
−
j
ω
r
,
其中:
r
‘
s
=
R
s
+
R
r
L
2
m
L
2
r
\text{带入转子电压方程:} \\ 0=R_r\left( \frac{\overrightarrow{\varPsi }_{r\alpha \beta}-L_m\overrightarrow{i}_{s\alpha \beta}}{L_r} \right) +\frac{d\overrightarrow{\varPsi }_{r\alpha \beta}}{dt}-j\omega _r\overrightarrow{\varPsi }_{r\alpha \beta}\text{化简可得:} \\ \frac{d\overrightarrow{\varPsi }_{r\alpha \beta}}{dt}=\frac{R_rL_m}{L_r}\overrightarrow{i}_{s\alpha \beta}-\omega _{br}\overrightarrow{\varPsi }_{r\alpha \beta} \\ \text{其中:}\omega _{br}=\frac{R_r}{L_r}-j\omega _r, \\ \text{其中:}{r^`}_s=R_s+R_r\frac{{L^2}_m}{{L^2}_r}
带入转子电压方程:0=Rr(LrΨ
rαβ−Lmi
sαβ)+dtdΨ
rαβ−jωrΨ
rαβ化简可得:dtdΨ
rαβ=LrRrLmi
sαβ−ωbrΨ
rαβ其中:ωbr=LrRr−jωr,其中:r‘s=Rs+RrL2rL2m
将磁链微分项带入定子电压方程可得:
u
→
s
α
β
=
R
s
i
→
s
α
β
+
σ
L
s
p
i
→
s
α
β
+
L
m
L
r
p
Ψ
→
r
α
β
u
→
s
α
β
=
R
s
i
→
s
α
β
+
σ
L
s
p
i
→
s
α
β
+
L
m
L
r
(
R
r
L
m
L
r
i
→
s
α
β
−
ω
b
r
Ψ
→
r
α
β
)
p
i
→
s
α
β
=
1
σ
L
s
(
u
→
s
α
β
−
r
‘
s
i
→
s
α
β
+
L
m
L
r
ω
b
r
Ψ
→
r
α
β
)
\text{将磁链微分项带入定子电压方程可得:} \\ \overrightarrow{u}_{s\alpha \beta}=R_s\overrightarrow{i}_{s\alpha \beta}+\sigma L_s\overrightarrow{pi}_{s\alpha \beta}+\frac{L_m}{L_r}p\overrightarrow{\varPsi }_{r\alpha \beta} \\ \overrightarrow{u}_{s\alpha \beta}=R_s\overrightarrow{i}_{s\alpha \beta}+\sigma L_s\overrightarrow{pi}_{s\alpha \beta}+\frac{L_m}{L_r}\left( \frac{R_rL_m}{L_r}\overrightarrow{i}_{s\alpha \beta}-\omega _{br}\overrightarrow{\varPsi }_{r\alpha \beta} \right) \\ \overrightarrow{pi}_{s\alpha \beta}=\frac{1}{\sigma L_s}\left( \overrightarrow{u}_{s\alpha \beta}-{r^`}_s\overrightarrow{i}_{s\alpha \beta}+\frac{L_m}{L_r}\omega _{br}\overrightarrow{\varPsi }_{r\alpha \beta} \right)
将磁链微分项带入定子电压方程可得:u
sαβ=Rsi
sαβ+σLspi
sαβ+LrLmpΨ
rαβu
sαβ=Rsi
sαβ+σLspi
sαβ+LrLm(LrRrLmi
sαβ−ωbrΨ
rαβ)pi
sαβ=σLs1(u
sαβ−r‘si
sαβ+LrLmωbrΨ
rαβ) 与论文相同。
表示为状态方程的形式:
[
i
˙
→
s
α
β
Ψ
˙
→
r
α
β
]
=
[
−
r
‘
s
σ
L
s
L
m
σ
L
s
L
r
ω
b
r
R
r
L
m
L
r
−
ω
b
r
]
[
i
→
s
α
β
Ψ
→
r
α
β
]
+
[
1
σ
L
s
0
]
u
→
s
α
β
\left[ \begin{array}{c} \overrightarrow{\dot{i}}_{s\alpha \beta}\\ \overrightarrow{\dot{\varPsi}}_{r\alpha \beta}\\ \end{array} \right] =\left[ \begin{matrix} -\frac{{r^`}_s}{\sigma L_s}& \frac{L_m}{\sigma L_sL_r}\omega _{br}\\ R_r\frac{L_m}{L_r}& -\omega _{br}\\ \end{matrix} \right] \left[ \begin{array}{c} \overrightarrow{i}_{s\alpha \beta}\\ \overrightarrow{\varPsi }_{r\alpha \beta}\\ \end{array} \right] +\left[ \begin{array}{c} \frac{1}{\sigma L_s}\\ 0\\ \end{array} \right] \overrightarrow{u}_{s\alpha \beta}
⎣⎡i˙
sαβΨ˙
rαβ⎦⎤=[−σLsr‘sRrLrLmσLsLrLmωbr−ωbr][i
sαβΨ
rαβ]+[σLs10]u
sαβ 由于转速作为系数矩阵的参数,因此转速将动态影响系统的特征根,影响系统动态响应;