关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。
SQL语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。
主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2、PostqreSQL 等。
以上数据库在使用的时候必须先建库建表设计表结构,然后存储数据的时候按表结构去存,如果数据与表结构不匹配就会存储失败。
关系数据库的存储结构是二维表格,关系型数据库大部分将数据存放到硬盘中,可以将有关系的表放在一个库中
在每个二维表格中
每一行称为一条记录,用来描述一个对象的信息
每一列称为一个字段,用来描述对象的一个属性
NoSQL(NoSQL = Not Only SQL),意思是"不仅仅是 SQL",是非关系型数据库的总称。除了主流的关系型数据库外的数据库,都认为是非关系型。
不需要预先建库建表定义数据存储表结构,每条记录可以有不同的数据类型和字段个数 (比如微信群聊甲的文字、图片、视频、音乐等)
主流的 NoSQL数据库有 Redis、MongBD、Hbase、Memcached 等。
关系型和非关系型数据库的主要差异是数据存储的方式。
天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。数据及其特性是选择数据存储和提取方式的首要影响因素。
SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展赖支持更多并发量。
是纵向扩展,扩展CPU等性能磁盘空间空间,也就是提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来克服。虽然SOL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。
是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是最佳选择。SQL,数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作, 但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
• 关系型: 特别适合高事务性要求和需要控制执行计划的任务
• 非关系型: 此处会稍显弱势,其价值点在于高扩展性和大数据量处理方面
可用于应对 Web2.0 纯动态网站类型的三高问题。
(1)Highperformance——对数据库高并发读写需求
(2)Huge Storage——对海量数据高效存储与访问需求
(3)High Scalability && High Availability——对数据库高可扩展性与高可用性需求
关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思略。让关系数据库关注在关系上,非关系型数据库关注在存储上。
例如,在读写分离的MySQL数据库环境中,可以把经常访问的数据存储在非关系型数据库中,提升访问速度。
实例-->数据库-->表(table)-->记录行(row)、数据字段(column)
实例-->数据库-->集合(collection)-->键值对(key-value)、文档、图结构
非关系型数据库不需要手动建数据库和集合 (表)。
回到顶部(go to top)Redis(远程字典服务器)是一个开源的、使用C语言编写的NoSQL数据库
Redis 基于内存运行并支持持久化,采用key-value(键值对)的存储形式,是目前分布式架构中不可或缺的一环。
Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。
若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降; 若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。
在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若CPU资源比较紧张,采用单进程即可。
*Redis6.0之前都是单线程,6.0版本之后支持多线程,但一般只针对网络,读写方面还是使用单线程
(1)具有极高的数据读写速度∶数据读取的速度最高可达到 110000 次/s,数据写入速度最高可达到 81000 次/s。
(2)支持丰富的数据类型∶使用key-value存储模式,Strings、Lists、Hashes、Sets 及 Sorted Sets 等数据类型操作。
(3)支持数据的持久化∶可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
(4)原子性∶Redis所有操作都是原子性的。
(5)支持数据备份∶即 master-salve 模式的数据备份。
Redis作为基于内存运行的数据库,缓存是其最常应用的场景之一。
除此之外, Redis常见应用场景还包括获取最新N个数据的操作、排行榜类应用、计数器应用、存储关系、实时分析系统、日志记录(根据不同的数据类型实现不同场景的支持)。
概述:String是redis最基本的类型,最大能存储512MB的数据,String类型是二进制安全的,即可以存储任何数据、比如数字、图片、序列化对象等
概述:列表的元素类型为string,按照插入顺序排序,在列表的头部或尾部添加元素
概述:hash用于存储对象。可以采用这样的命名方式:对象类别和ID构成键名,使用字段表示对象的属性,而字段值则存储属性值。如:存储ID为2的汽车对象。
如果Hash中包含很少的字段,那么该类型的数据也将仅占用很少的磁盘空间。每一个Hash可以存储4294967295个键值对。
概述:无序集合,元素类型为String类型,元素具有唯一性,不允许存在重复的成员。多个集合类型之间可以进行并集、交集和差集运算。
应用范围:
1.可以使用Redis的Set数据类型跟踪一些唯一性数据,比如访问某一博客的唯一IP地址信息。对于此场景,我们仅需在每次访问该博客时将访问者的IP存入Redis中,Set数据类型会自动保证IP地址的唯一性。
2.充分利用Set类型的服务端聚合操作方便、高效的特性,可以用于维护数据对象之间的关联关系。比如所有购买某一电子设备的客户ID被存储在一个指定的Set中,而购买另外一种电子产品的客户ID被存储在另外一个Set中,如果此时我们想获取有哪些客户同时购买了这两种商品时,Set的intersections命令就可以充分发挥它的方便和效率的优势了。
概述:有序集合,元素类型为Sting,元素具有唯一性,不能重复。
每个元素都会关联一个double类型的分数score(表示权重),可以通过权重的大小排序,元素的score可以相同。
应用范围:
1)可以用于一个大型在线游戏的积分排行榜。每当玩家的分数发生变化时,可以执行ZADD命令更新玩家的分数,此后再通过ZRANGE命令获取积分TOP10的用户信息。当然我们也可以利用ZRANK命令通过username来获取玩家的排行信息。最后我们将组合使用ZRANGE和ZRANK命令快速的获取和某个玩家积分相近的其他用户的信息。
2)Sorted-Set类型还可用于构建索引数据。
(1)Redis 是一款纯内存结构,避免了磁盘I/O等耗时操作。
(2)Redis 命令处理的核心模块为单线程,减少了锁竞争,以及频繁创建线程和销毁线程的代价,减少了线程上下文切换的消耗。
(3)采用了 I/O 多路复用机制,大大提升了并发效率。
I/O多路复用程序虽然会同时监听多个 Socket 连接,但是其会将监听的 Socket 都放到一个队列里面,然后通过这个队列有序的,同步的将每个 Socket 对应的事件传送给文件事件分派器,再由文件事件分派器分派给对应的事件处理器进行处理,只有当一个 Socket 所对应的事件被处理完毕之后,I/O多路复用程序才会继续向文件事件分派器传送下一个 Socket所对应的事件,这也可以验证上面的结论,处理客户端的命令请求是单线程的方式逐个处理,但是事件处理器内并不是只有一个线程。
memcached和redis就是将数据存储在内存中,按照key-value的方式查询,可以大幅度提高效率。
所以一般它们都用做缓存服务器,缓存常用的数据,需要查询的时候,直接从它们那儿获取,减少查询数据库的次数,提高查询效率。
1 2 |
systemctl stop firewalld
setenforce 0
|
1 |
yum install -y gcc gcc -c++ make
|
1 2 3 4 5 |
tar zxvf redis-5.0.7. tar .gz -C /opt/
cd /opt/redis-5 .0.7/
make
make PREFIX= /usr/local/redis install
|
由于Redis源码包中直接提供了Makefile文件,所以在解压完软件包后,不用先执行./configure进行配置,可直接执行make与make install命令进行安装
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
cd /opt/redis-5 .0.7 /utils
. /install_server .sh
......
#一直回车.
Please select the redis executable path [ /usr/local/bin/redis-server ]
/usr/local/redis/bin/redis-server
#需要手动修改为/usr/local/redis/bin/redis-server 注意要一次性正确输入
Selected config:
Port : 6379 #默认侦听端口为6379
Config file : /etc/redis/6379 .conf #配置文件路径
Log file : /var/log/redis_6379 .log #日志文件路径
Data dir : /var/lib/redis/6379 #数据文件路径
Executable : /usr/local/redis/bin/redis-server #可执行文件路径
Cli Executable : /usr/local/bin/redis-cli #客户端命令工具
|
1 2 3 4 |
ln -s /usr/local/redis/bin/ * /usr/local/bin/
#当install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认侦听端口为6379
netstat -natp | grep redis
|
1 2 3 4 5 6 7 8 |
/etc/init .d /redis_6379 stop
#停止
/etc/init .d /redis_6379 start
#启动
/etc/init .d /redis_6379 restart
#重启
/etc/init .d /redis_6379 status
#状态
|
1 2 3 4 5 |
chmod +x /etc/init .d /redis_6379 #加入全局系统环境,使用systemctl命令管理
chkconfig --add /etc/init .d /redis_6379
systemctl start redis_6379.service
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
vim /etc/redis/6379 .conf
bind 127.0.0.1 192.168.226.129
#70行,添加监听的主机地址
port 6379
#93行,Redis默认的监听端口
daemonize yes
#137行,启用守护进程
pidfile /var/run/redis_6379 .pid
#159行,指定PID文件
loglevel notice
#167行,日志级别
logfile /var/log/redis_6379 .log
#172行,指定日志文件
/etc/init .d /redis_6379 restart
|
redis-server 用于启动 Redis 的工具
redis-benchmark 用于检测 Redis 在本机的运行效率
redis-check-aof 修复 AOF 持久化文件
redis-check-rdb 修复 RDB 持久化文件
redis-cli Redis命令行工具
rdb和aof是redis服务中持久化功能的两种形式RDB AOF
redis-cli 常用于登陆至redis数据库
1 2 3 4 5 6 7 8 |
语法: redis-cli -h host -p port -a password
选项:
-h :指定远程主机
-p :指定Redis 服务的端口号
-a :指定密码,未设置数据库密码可以省略-a选项
若不添加任何选项表示,则使用127.0.0.1:6379 连接本机上的 Redis 数据库,
redis-cli -h 192.168.229.60 -p 6379
|
redis-benchmark 是官方自带的 Redis 性能测试工具,可以有效的测试 Redis 服务的性能。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
-h:指定服务器主机名
-p:指定服务器端口
-s:指定服务器 socket
-c:指定并发连接数
-n:指定请求数
-d:以字节的形式指定 SET /GET 值的数据大小
-k:1=keep alive 0=reconnect
-r: SET /GET/INCR 使用随机 key, SADD 使用随机值
-P:通过管道传输<numred>请求
-q:强制退出 redis。仅显示 query /sec 值
–csv:以 CSV 格式输出
-l:生成循环,永久执行测试
-t:仅运行以逗号分隔的测试命令列表
-I:Idle 模式。仅打开 N 个 idle 连接并等待
#向 IP 地址为 192.168.229.60、端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能
redis-benchmark -h 192.168.229.60 -p 6379 -c 100 -n 100000
#测试存取大小为 100 字节的数据包的性能
redis-benchmark -h 192.168.229.60 -p 6379 -q -d 100
#测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能
redis-benchmark -t set ,lpush -n 100000 -q
|
set: 存放数据,命令格式为 set key value
get: 获取数据,命令格式为 get key
1 2 3 4 5 |
[root@cm ~] # redis-cli -h 192.168.229.60 -p 6379
192.168.229.60:6379> set name lili
OK
192.168.229.60:6379> get name
"lili"
|
keys 命令可以取符合规则的键值列表,通常情况可以结合*、?等选项来使用。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
192.168.229.60:6379> set name lili
OK
192.168.229.60:6379> get name
"lili"
192.168.229.60:6379> set a1 1
OK
192.168.229.60:6379> set a2 2
OK
192.168.229.60:6379> set a12 12
OK
192.168.229.60:6379> set a122 122
OK
192.168.229.60:6379> set v1 3
OK
192.168.229.60:6379> set k1 4
OK
192.168.229.60:6379> keys * #查看当前数据库中所有的键
1) "k1"
2) "name"
3) "v1"
4) "myset:__rand_int__"
5) "mylist"
6) "a12"
7) "counter:__rand_int__"
8) "a1"
9) "a2"
10) "key:__rand_int__"
11) "a122"
192.168.229.60:6379> keys a* #查看当前数据中以a开头的所有数据
1) "a12"
2) "a1"
3) "a2"
4) "a122"
192.168.229.60:6379> keys a? #查看当前数据中以a开头,a开头后面包含任意一位的数据
1) "a1"
2) "a2"
192.168.229.60:6379> keys a?? #查看当前数据中以a开头,a开头后面包含任意两位的数据
1) "a12"
|
可以判断键值是否存在
1 2 3 4 5 6 |
192.168.229.60:6379> exists name
(integer) 1
192.168.229.60:6379> exists a1 a2 a12 a122
(integer) 4
192.168.229.60:6379> exists a3
(integer) 0
|
可以删除当前数据库的指定key
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
192.168.229.60:6379> keys *
1) "name"
2) "v1"
3) "myset:__rand_int__"
4) "mylist"
5) "a12"
6) "counter:__rand_int__"
7) "a1"
8) "a2"
9) "key:__rand_int__"
10) "a122"
192.168.229.60:6379> keys *
1) "name"
2) "v1"
3) "myset:__rand_int__"
4) "mylist"
5) "a12"
6) "counter:__rand_int__"
7) "a1"
8) "a2"
9) "key:__rand_int__"
10) "a122"
192.168.229.60:6379> del v1
(integer) 1
192.168.229.60:6379> exists v1
(integer) 0
192.168.229.60:6379> del a1 a2 a12 a122
(integer) 4
192.168.229.60:6379> keys *
1) "name"
2) "myset:__rand_int__"
3) "mylist"
4) "counter:__rand_int__"
5) "key:__rand_int__"
|
可以获取key对应的 value 值类型
1 2 3 4 5 6 7 8 |
192.168.229.60:6379> keys *
1) "name"
2) "myset:__rand_int__"
3) "mylist"
4) "counter:__rand_int__"
5) "key:__rand_int__"
192.168.229.60:6379> type name
string
|
是对已有key进行重命名。 (覆盖)
命令格式: rename 源key 目标key
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。
在实际使用过程中,建议先用 exists命令查看目标key是否存在,然后再决定是否执行rename命令,以避免覆盖重要数据。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
192.168.229.60:6379> keys *
1) "name"
2) "myset:__rand_int__"
3) "mylist"
4) "counter:__rand_int__"
5) "a1"
6) "a2"
7) "key:__rand_int__"
192.168.229.60:6379> get a1
"1"
192.168.229.60:6379> get a2
"2"
192.168.229.60:6379> rename a1 a2
OK
192.168.229.60:6379> keys *
1) "name"
2) "myset:__rand_int__"
3) "mylist"
4) "counter:__rand_int__"
5) "a2"
6) "key:__rand_int__"
192.168.229.60:6379> get a2
"1"
|
6.8 renamenx 命令
作用是对已有key进行重命名,并检测新名是否存在
如果目标key存在则不进行重命名。 (不覆盖)
命令格式: renamenx 源key 目标key
Redis支持多数据库,Redis 默认情况下包含16个数据库,数据库名称是用数字0-15 来依次命名的
多数据库相互独立,互不干扰
命令格式: select 序号
使用 redis-cli 连接Redis数据库后,默认使用的是序号为 0 的数据库。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
192.168.229.60:6379> select 0
OK
192.168.229.60:6379> keys *
1) "a3"
2) "key:__rand_int__"
3) "myset:__rand_int__"
4) "mylist"
5) "name"
6) "b2"
7) "counter:__rand_int__"
192.168.229.60:6379> select 6
OK
192.168.229.60:6379[6]> keys *
(empty list or set )
|
格式: move 键值 序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
192.168.229.60:6379> keys *
1) "a3"
2) "key:__rand_int__"
3) "myset:__rand_int__"
4) "mylist"
5) "name"
6) "b2"
7) "counter:__rand_int__"
192.168.229.60:6379> get a3
"1"
192.168.229.60:6379> move a3 6
(integer) 1
192.168.229.60:6379> select 6
OK
192.168.229.60:6379[6]> keys *
1) "a3"
192.168.229.60:6379[6]> get a3
"1"
192.168.229.60:6379[6]> select 0
OK
192.168.229.60:6379> keys *
1) "key:__rand_int__"
2) "myset:__rand_int__"
3) "mylist"
4) "name"
5) "b2"
6) "counter:__rand_int__"
|
FLUSHDB :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!!!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
192.168.229.60:6379[6]> keys *
1) "a3"
2) "aa2"
3) "aa1"
192.168.229.60:6379[6]> flushdb
OK
192.168.229.60:6379[6]> keys *
(empty list or set )
192.168.229.60:6379[6]> flushall
OK
192.168.229.60:6379[6]> select 0
OK
192.168.229.60:6379> keys *
(empty list or set )
|
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展,数据安全不会丢失等。
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和集群,作用如下:
持久化 :持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
主从复制 :主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵 :在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷 :写操作无法负载均衡;存储能力受到单机的限制。
集群 : 通过集群, Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善 的高可用方案。
回到顶部(go to top)Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式( 数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。
除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置(NFS)
• RDB持久化 : 原理是将Reids在内存中的数据库记录定时保存到磁盘上
• AOF持久化(append only file) : 原理是将Reids的操作日志以追加的方式写入文件,类似于MySQL的binlog
由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地
回到顶部(go to top)RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据
RDB持久化的触发分为手动触发和自动触发两种
• save命令和bgsave命令都可以生成RDB文件
• save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求
•而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程 (即Redis主进程) 则继续处理请求
• bgsave命令执行过程中,只有fork 子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用!!!
往往生产环境 bgsave 依然不允许轻易使用
• 在自动触发RDB持久化时,Redis也 会选择bgsave而不是save来进行持久化
save m n
• 自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave
1 2 3 4 5 6 7 8 9 10 11 |
vim /etc/redis/6379 .conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时, 如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化, 则执行bgsave
--242行--是否开启RDB文件压缩
rdbcompression yes
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
|
除了 save m n 以外,还有一些其他情况会触发bgsave:
• 在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点
• 执行shutdown命令时,自动执行rdb持久化
(1) Redis父进程首先判断 :当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行,则bgsave命令直接返回bgsave/bgrewriteaof 的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题
(2) 父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3) 父进程fork后,bgsave 命令返回”Background saving started" 信息并不再阻塞父进程,并可以响应其他命令
(4) 子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5) 子进程发送信号给父进程表示完成,父进程更新统计信息
• RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于A0F的优先级更高,因此当AOF开启时,Redis会优先载入AOF文件来恢复数据;只有当A0F关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止
• Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败
回到顶部(go to top)• RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
• 与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案
Redis服务器默认开启RDB,关闭AOF: 要开启AOF,需要在配置文件中配置:
1 2 3 4 5 6 7 8 9 |
vim /etc/redis/6379 .conf
- 700行--修改, 开启AOF
appendonly yes
--704行--指定A0F文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init .d /redis_6379 restart
|
由于需要记录Redis的每条写命令,因此A0F不需要触发,AOF的执行流程如下:
• 命令追加(append): 将Redis的写命令追加到缓冲区aof_ buf;
• 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
• 文件重写(rewrite): 定期重写AOF文件,达到压缩的目的。
① 命令追加 (append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在A0F文件中,除了用于指定数据库的select命令 (如select0为选中0号数据库) 是由Redis添加的,其他都是客户端发送来的写命令
② 文件写入(write) 和文件同步 (sync)
Redis 提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
1 2 3 4 5 6 7 8 9 10 |
vim /etc/redis/6379 .conf
---729---
● appendfsync always:
命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
● appendfsync no:
命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
● appendfsynceverysec:
命令写入aof_buf后调用系统write操作,write完成后线程返回; fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
|
③ 文件重写 (rewrite)
• 随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大:过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
• 文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
• 关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入:因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行
文件重写之所以能够压缩AOF文件,原因在于:
• 过期的数据不再写入文件
• 无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(sadd myset v1, del myset) 等。
• 多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度
• 手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞
• 自动触发:通过设置auto-aof - rewrite-min-size选项和auto- aof - rewrite- percentage选项来自动执行BGREWRITEAOF
只有当auto-aof- rewrite- -min-size和auto-aof -rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作
1 2 3 4 5 6 |
vim /etc/redis/ 6379. conf
----729----
● auto-aof- rewrite-percentage 100
:当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
● auto-aof - rewrite-min-size 64mb
:当前A0F文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
|
关于文件重写的流程,有两点需要特别注意:
♢ 重写由父进程fork子进程进行;
♢ 重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_ rewrite_buf缓存
文件重写的流程如下:
(1) Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行
(2) 父进程执行fork操作创建子进程,这个过程中父进程是阻塞的
(3.1) 父进程fork后,bgrewriteaof 命令返回"Background append only file rewrite started" 信息并不再阻塞父进程,并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有A0F机制的正确
(3.2) 由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_ rewrite_buf) 保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行 期间,Redis的写 命令同时追加到aof_ buf和aof_ rewirte_ buf两个缓冲区
(4) 子进程根据内存快照,按照命令合并规则写入到新的AOF文件
(5.1) 子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看
(5.2) 父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致
(5.3) 使用新的AOF文件替换老文件,完成AOF重写
• 当AOF开启时,Redis启 动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据
• 当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载
• Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整 (机器突然宕机等容易导致文件尾部不完整),且aof-load- truncated参数开启,则日志中会输出警告,Redis 忽略掉AOF文件的尾部,启动成功
• aof-load-truncated参数默认是开启的
回到顶部(go to top)优点:
•vRDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比, RDB最 重要的优点之一是对性能的影响相对较小
缺点:
• RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)
• 对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力
• 与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大
• 对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题
• AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的I0压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对Redis主进程性能的影响会更大
回到顶部(go to top)1 |
192.168.229.60: 7001> info memory
|
操作系统分配的内存值used_ memory_ rss除以Redis使用的内存值used_ memory计算得出内存碎片是由
操作系统低效的分配/回收物理内存导致的 (不连续的物理内存分配)
跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
• 内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
• 内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150号, 其中50号是内存碎片率。需要在redis-cli工具.上输入shutdown save命令,并重启Redis 服务器
• 内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少Redis内存占用
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换
避免内存交换发生的方法:
• 针对缓存数据大小选择安装Redis 实例
• 尽可能的使用Hash数据结构存储
• 设置key的过期时间
• 保证合理分配redis有限的内存资源
• 当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除
配置文件中修改maxmemory- policy属性值:
1 2 3 4 5 6 7 8 9 |
vim /etc/redis/6379 .conf
--598--
maxmemory-policy noenviction
●volatile-lru :使用LRU算法从已设置过期时间的数据集合中淘汰数据
●volatile-ttl :从已设置过期时间的数据集合中挑选即将过期的数据淘汰
●volatile-random :从已设置过期时间的数据集合中随机挑选数据淘汰
●allkeys-lru :使用LRU算法从所有数据集合中淘汰数据
●allkeys-random :从数据集合中任意选择数据淘汰
●noenviction :禁止淘汰数据
|