在前面的篇章中,我们多次提到了 Java 语法和 Java 字节码的差异之处。这些差异之处都是通过 Java 编译器来协调的。今天我们便来列举一下 Java 编译器的协调工作。
首先要提到的便是 Java 的自动装箱(auto-boxing)和自动拆箱(auto-unboxing)。
我们知道,Java 语言拥有 8 个基本类型,每个基本类型都有对应的包装(wrapper)类型。
之所以需要包装类型,是因为许多 Java 核心类库的 API 都是面向对象的。举个例子,Java 核心类库中的容器类,就只支持引用类型。
当需要一个能够存储数值的容器类时,我们往往定义一个存储包装类对象的容器。
对于基本类型的数值来说,我们需要先将其转换为对应的包装类,再存入容器之中。在 Java 程序中,这个转换可以是显式,也可以是隐式的,后者正是 Java 中的自动装箱。
public int foo() { ArrayList<Integer> list = new ArrayList<>(); list.add(0); int result = list.get(0); return result; }
以上图中的 Java 代码为例。我构造了一个 Integer 类型的 ArrayList,并且向其中添加一个 int 值 0。然后,我会获取该 ArrayList 的第 0 个元素,并作为 int 值返回给调用者。这段代码对应的 Java 字节码如下所示:
public int foo(); Code: 0: new java/util/ArrayList 3: dup 4: invokespecial java/util/ArrayList."<init>":()V 7: astore_1 8: aload_1 9: iconst_0 10: invokestatic java/lang/Integer.valueOf:(I)Ljava/lang/Integer; 13: invokevirtual java/util/ArrayList.add:(Ljava/lang/Object;)Z 16: pop 17: aload_1 18: iconst_0 19: invokevirtual java/util/ArrayList.get:(I)Ljava/lang/Object; 22: checkcast java/lang/Integer 25: invokevirtual java/lang/Integer.intValue:()I 28: istore_2 29: iload_2 30: ireturn
当向泛型参数为 Integer 的 ArrayList 添加 int 值时,便需要用到自动装箱了。在上面字节码偏移量为 10 的指令中,我们调用了 Integer.valueOf 方法,将 int 类型的值转换为 Integer 类型,再存储至容器类中。
public static Integer valueOf(int i) { if (i >= IntegerCache.low && i <= IntegerCache.high) return IntegerCache.cache[i + (-IntegerCache.low)]; return new Integer(i); }
这是 Integer.valueOf 的源代码。可以看到,当请求的 int 值在某个范围内时,我们会返回缓存了的 Integer 对象;而当所请求的 int 值在范围之外时,我们则会新建一个 Integer 对象。
在介绍反射的那一篇中,我曾经提到参数 java.lang.Integer.IntegerCache.high。这个参数将影响这里面的 IntegerCache.high。
也就是说,我们可以通过配置该参数,扩大 Integer 缓存的范围。Java 虚拟机参数 -XX:+AggressiveOpts 也会将 IntegerCache.high 调整至 20000。
奇怪的是,Java 并不支持对 IntegerCache.low 的更改,也就是说,对于小于 -128 的整数,我们无法直接使用由 Java 核心类库所缓存的 Integer 对象。
25: invokevirtual java/lang/Integer.intValue:()I
当从泛型参数为 Integer 的 ArrayList 取出元素时,我们得到的实际上也是 Integer 对象。如果应用程序期待的是一个 int 值,那么就会发生自动拆箱。
在我们的例子中,自动拆箱对应的是字节码偏移量为 25 的指令。该指令将调用 Integer.intValue 方法。这是一个实例方法,直接返回 Integer 对象所存储的 int 值。
你可能已经留意到了,在前面例子生成的字节码中,往 ArrayList 中添加元素的 add 方法,所接受的参数类型是 Object;而从 ArrayList 中获取元素的 get 方法,其返回类型同样也是 Object。
前者还好,但是对于后者,在字节码中我们需要进行向下转换,将所返回的 Object 强制转换为 Integer,方能进行接下来的自动拆箱。
13: invokevirtual java/util/ArrayList.add:(Ljava/lang/Object;)Z ... 19: invokevirtual java/util/ArrayList.get:(I)Ljava/lang/Object; 22: checkcast java/lang/Integer
之所以会出现这种情况,是因为 Java 泛型的类型擦除。这是个什么概念呢?简单地说,那便是 Java 程序里的泛型信息,在 Java 虚拟机里全部都丢失了。这么做主要是为了兼容引入泛型之前的代码。
当然,并不是每一个泛型参数被擦除类型后都会变成 Object 类。对于限定了继承类的泛型参数,经过类型擦除后,所有的泛型参数都将变成所限定的继承类。也就是说,Java 编译器将选取该泛型所能指代的所有类中层次最高的那个,作为替换泛型的类。
class GenericTest<T extends Number> { T foo(T t) { return t; } }
举个例子,在上面这段 Java 代码中,我定义了一个 T extends Number 的泛型参数。它所对应的字节码如下所示。可以看到,foo 方法的方法描述符所接收参数的类型以及返回类型都为 Number。方法描述符是 Java 虚拟机识别方法调用的目标方法的关键。
T foo(T); descriptor: (Ljava/lang/Number;)Ljava/lang/Number; flags: (0x0000) Code: stack=1, locals=2, args_size=2 0: aload_1 1: areturn Signature: (TT;)TT;
不过,字节码中仍存在泛型参数的信息,如方法声明里的 T foo(T),以及方法签名(Signature)中的“(TT;)TT;”。这类信息主要由 Java 编译器在编译他类时使用。
既然泛型会被类型擦除,那么我们还有必要用它吗?
我认为是有必要的。Java 编译器可以根据泛型参数判断程序中的语法是否正确。举例来说,尽管经过类型擦除后,ArrayList.add 方法所接收的参数是 Object 类型,但是往泛型参数为 Integer 类型的 ArrayList 中添加字符串对象,Java 编译器是会报错的。
ArrayList<Integer> list = new ArrayList<>(); list.add("0"); // 编译出错
泛型的类型擦除带来了不少问题。其中一个便是方法重写。在第四篇的课后实践中,我留了这么一段代码:
class Merchant<T extends Customer> { public double actionPrice(T customer) { return 0.0d; } } class VIPOnlyMerchant extends Merchant<VIP> { @Override public double actionPrice(VIP customer) { return 0.0d; } }
VIPOnlyMerchant 中的 actionPrice 方法是符合 Java 语言的方法重写的,毕竟都使用 @Override 来注解了。然而,经过类型擦除后,父类的方法描述符为 (LCustomer;)D,而子类的方法描述符为 (LVIP;)D。这显然不符合 Java 虚拟机关于方法重写的定义。
为了保证编译而成的 Java 字节码能够保留重写的语义,Java 编译器额外添加了一个桥接方法。该桥接方法在字节码层面重写了父类的方法,并将调用子类的方法。
class VIPOnlyMerchant extends Merchant<VIP> ... public double actionPrice(VIP); descriptor: (LVIP;)D flags: (0x0001) ACC_PUBLIC Code: 0: dconst_0 1: dreturn public double actionPrice(Customer); descriptor: (LCustomer;)D flags: (0x1041) ACC_PUBLIC, ACC_BRIDGE, ACC_SYNTHETIC Code: 0: aload_0 1: aload_1 2: checkcast class VIP 5: invokevirtual actionPrice:(LVIP;)D 8: dreturn // 这个桥接方法等同于 public double actionPrice(Customer customer) { return actionPrice((VIP) customer); }
在我们的例子中,VIPOnlyMerchant 类将包含一个桥接方法 actionPrice(Customer),它重写了父类的同名同方法描述符的方法。该桥接方法将传入的 Customer 参数强制转换为 VIP 类型,再调用原本的 actionPrice(VIP) 方法。
当一个声明类型为 Merchant,实际类型为 VIPOnlyMerchant 的对象,调用 actionPrice 方法时,字节码里的符号引用指向的是 Merchant.actionPrice(Customer) 方法。Java 虚拟机将动态绑定至 VIPOnlyMerchant 类的桥接方法之中,并且调用其 actionPrice(VIP) 方法。
需要注意的是,在 javap 的输出中,该桥接方法的访问标识符除了代表桥接方法的 ACC_BRIDGE 之外,还有 ACC_SYNTHETIC。它表示该方法对于 Java 源代码来说是不可见的。当你尝试通过传入一个声明类型为 Customer 的对象作为参数,调用 VIPOnlyMerchant 类的 actionPrice 方法时,Java 编译器会报错,并且提示参数类型不匹配。
Customer customer = new VIP(); new VIPOnlyMerchant().actionPrice(customer); // 编译出错
当然,如果你实在想要调用这个桥接方法,那么你可以选择使用反射机制。
class Merchant { public Number actionPrice(Customer customer) { return 0; } } class NaiveMerchant extends Merchant { @Override public Double actionPrice(Customer customer) { return 0.0D; } }
除了前面介绍的泛型重写会生成桥接方法之外,如果子类定义了一个与父类参数类型相同的方法,其返回类型为父类方法返回类型的子类,那么 Java 编译器也会为其生成桥接方法。
class NaiveMerchant extends Merchant public java.lang.Double actionPrice(Customer); descriptor: (LCustomer;)Ljava/lang/Double; flags: (0x0001) ACC_PUBLIC Code: stack=2, locals=2, args_size=2 0: dconst_0 1: invokestatic Double.valueOf:(D)Ljava/lang/Double; 4: areturn public java.lang.Number actionPrice(Customer); descriptor: (LCustomer;)Ljava/lang/Number; flags: (0x1041) ACC_PUBLIC, ACC_BRIDGE, ACC_SYNTHETIC Code: stack=2, locals=2, args_size=2 0: aload_0 1: aload_1 2: invokevirtual actionPrice:(LCustomer;)Ljava/lang/Double; 5: areturn
我之前曾提到过,class 文件里允许出现两个同名、同参数类型但是不同返回类型的方法。这里的原方法和桥接方法便是其中一个例子。由于该桥接方法同样标注了 ACC_SYNTHETIC,因此,当在 Java 程序中调用 NaiveMerchant.actionPrice 时,我们只会调用到原方法。
在前面的篇章中,我已经介绍过了变长参数、try-with-resources 以及在同一 catch 代码块中捕获多种异常等语法糖。下面我将列举另外两个常见的语法糖。
foreach 循环允许 Java 程序在 for 循环里遍历数组或者 Iterable 对象。对于数组来说,foreach 循环将从 0 开始逐一访问数组中的元素,直至数组的末尾。其等价的代码如下面所示:
public void foo(int[] array) { for (int item : array) { } } // 等同于 public void bar(int[] array) { int[] myArray = array; int length = myArray.length; for (int i = 0; i < length; i++) { int item = myArray[i]; } }
对于 Iterable 对象来说,foreach 循环将调用其 iterator 方法,并且用它的 hasNext 以及 next 方法来遍历该 Iterable 对象中的元素。其等价的代码如下面所示:
public void foo(ArrayList<Integer> list) { for (Integer item : list) { } } // 等同于 public void bar(ArrayList<Integer> list) { Iterator<Integer> iterator = list.iterator(); while (iterator.hasNext()) { Integer item = iterator.next(); } }
字符串 switch 编译而成的字节码看起来非常复杂,但实际上就是一个哈希桶。由于每个 case 所截获的字符串都是常量值,因此,Java 编译器会将原来的字符串 switch 转换为 int 值 switch,比较所输入的字符串的哈希值。
由于字符串哈希值很容易发生碰撞,因此,我们还需要用 String.equals 逐个比较相同哈希值的字符串。
如果你感兴趣的话,可以自己利用 javap 分析字符串 switch 编译而成的字节码。
今天我主要介绍了 Java 编译器对几个语法糖的处理。
基本类型和其包装类型之间的自动转换,也就是自动装箱、自动拆箱,是通过加入[Wrapper].valueOf(如 Integer.valueOf)以及[Wrapper].[primitive]Value(如 Integer.intValue)方法调用来实现的。
Java 程序中的泛型信息会被擦除。具体来说,Java 编译器将选取该泛型所能指代的所有类中层次最高的那个,作为替换泛型的具体类。
由于 Java 语义与 Java 字节码中关于重写的定义并不一致,因此 Java 编译器会生成桥接方法作为适配器。此外,我还介绍了 foreach 循环以及字符串 switch 的编译。
今天的实践环节,你可以探索一下 Java 10 的 var 关键字,是否保存了泛型信息?是否支持自动装拆箱?
public void foo() { var value = 1; var list = new ArrayList<Integer>(); list.add(value); // list.add("1"); 这一句能够编译吗? }