本文主要是介绍Hive基础知识之顾客访问店铺数据分析(UV、Top3),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
已知顾客访问店铺的访问日志
user_id |
shop |
---|
u1 |
a |
u2 |
b |
u1 |
b |
u1 |
a |
u3 |
c |
u4 |
b |
u1 |
a |
u2 |
c |
u5 |
b |
u4 |
b |
u6 |
c |
u2 |
c |
u1 |
b |
u2 |
a |
u2 |
a |
u3 |
a |
u5 |
a |
u5 |
a |
u5 |
a |
建表、导表
create table visit(user_id string,shop string) row format delimited fields terminated by '\t';
load data local inpath '/data/visit.dat' into table visit;
求每个店铺的UV(访客数)
select shop , count(distinct user_id) as uv from visit group by shop;
shop |
UV |
---|
shop |
uv |
a |
4 |
b |
4 |
c |
3 |
求每个店铺访问次数top3的访客信息。输出店铺名称、访客id、访问次数
1.先求出每个店铺,每个访客的访问次数
select
shop, user_id, count(*) as ct
from
visit
group by
shop, user_id;
shop |
user_id |
ct |
---|
a |
u1 |
3 |
b |
u1 |
2 |
a |
u2 |
2 |
b |
u2 |
1 |
c |
u2 |
2 |
a |
u3 |
1 |
c |
u3 |
1 |
b |
u4 |
2 |
a |
u5 |
3 |
b |
u5 |
1 |
c |
u6 |
1 |
2.计算每个店铺被用户访问次数排名
select
shop,user_id,ct,rank() over(partition by shop order by ct) rk
from
(
select
shop, user_id, count(*) as ct
from
visit
group by
shop, user_id
) as t1;
shop |
user_id |
ct |
rk |
---|
a |
u3 |
1 |
1 |
a |
u2 |
2 |
2 |
a |
u5 |
3 |
3 |
a |
u1 |
3 |
3 |
b |
u5 |
1 |
1 |
b |
u2 |
1 |
1 |
b |
u4 |
2 |
3 |
b |
u1 |
2 |
3 |
c |
u6 |
1 |
1 |
c |
u3 |
1 |
1 |
c |
u2 |
2 |
3 |
3.取每个店铺的前三名
select
shop, user_id, ct
from
(
select
shop,user_id,ct,rank() over(partition by shop order by ct) rk
from
(
select
shop, user_id, count(*) as ct
from
visit
group by
shop, user_id
) as t1
) as t2
where rk <= 3;
shop |
user_id |
ct |
---|
a |
u3 |
1 |
a |
u2 |
2 |
a |
u1 |
3 |
a |
u5 |
3 |
b |
u2 |
1 |
b |
u5 |
1 |
b |
u1 |
2 |
b |
u4 |
2 |
c |
u3 |
1 |
c |
u6 |
1 |
c |
u2 |
2 |
The End
这篇关于Hive基础知识之顾客访问店铺数据分析(UV、Top3)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!