#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; Mat mat_to_samples(Mat& image); int main(int arc, char** argv) { Mat src = imread("F://testImage//input.png"); namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); //组装数据 Mat points = mat_to_samples(src); //运行KMeans int numCluster = 4; Mat labels; Mat centers; TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers); //去背景遮罩生成 Mat mask = Mat::zeros(src.size(), CV_8UC1); int index = src.rows*2 + 2; int cindex = labels.at<int>(index, 0); int height = src.rows; int width = src.cols; Mat dst; src.copyTo(dst); for(int row=0;row<height;row++) { for (int col = 0; col < width; col++) { index = row * width + col; int label = labels.at<int>(index, 0); if (label == cindex)//背景 { dst.at<Vec3b>(row, col)[0] = 0; dst.at<Vec3b>(row, col)[1] = 0; dst.at<Vec3b>(row, col)[2] = 0; mask.at<uchar>(row, col) = 0; } else { mask.at<uchar>(row, col) = 255; } } } imshow("mask", mask); imshow("KMeans-Result", dst); //腐蚀+高斯模糊 waitKey(0); return 0; } Mat mat_to_samples(Mat& image) { int w = image.cols; int h = image.rows; int samplecount = w * h; int dims = image.channels(); Mat points(samplecount, dims, CV_32F, Scalar(10)); int index = 0; for (int row = 0; row < h; row++) { for (int col = 0; col < w; col++) { index = row * w + col; Vec3b bgr = image.at<Vec3b>(row, col); points.at<float>(index, 0) = static_cast<int>(bgr[0]); points.at<float>(index, 1) = static_cast<int>(bgr[1]); points.at<float>(index, 2) = static_cast<int>(bgr[2]); } } return points; }
去背景遮罩生成结果:
#include<opencv2\opencv.hpp> #include<iostream> using namespace cv; using namespace std; Mat mat_to_samples(Mat& image); int main(int arc, char** argv) { Mat src = imread("F://testImage//input.png"); namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); //组装数据 Mat points = mat_to_samples(src); //运行KMeans int numCluster = 4; Mat labels; Mat centers; TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers); //去遮罩生成 Mat mask = Mat::zeros(src.size(), CV_8UC1); int index = src.rows*2 + 2; int cindex = labels.at<int>(index, 0); int height = src.rows; int width = src.cols; Mat dst; src.copyTo(dst); for(int row=0;row<height;row++) { for (int col = 0; col < width; col++) { index = row * width + col; int label = labels.at<int>(index, 0); if (label == cindex)//背景 { dst.at<Vec3b>(row, col)[0] = 0; dst.at<Vec3b>(row, col)[1] = 0; dst.at<Vec3b>(row, col)[2] = 0; mask.at<uchar>(row, col) = 0; } else { mask.at<uchar>(row, col) = 255; } } } imshow("mask", mask); imshow("KMeans-Result", dst); //腐蚀+高斯模糊 Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); erode(mask, mask, k); imshow("erode-mask", mask); GaussianBlur(mask, mask, Size(3, 3), 0, 0); imshow("Blur Mask", mask); //通道混合 Vec3b color; //RNG rng(12345); //背景替换为红色 color[0] = 0;//rng.uniform(0, 255); color[1] = 0;//rng.uniform(0, 255); color[2] = 255;//rng.uniform(0, 255); Mat result(src.size(), src.type()); double w = 0.0; int b = 0, g = 0, r = 0; int b1 = 0, g1 = 0, r1 = 0; int b2 = 0, g2 = 0, r2 = 0; for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { int m = mask.at<uchar>(row, col); if (m == 255) { result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col);//前景 } else if(m==0) { result.at<Vec3b>(row, col) = color;//背景 } else { w = m / 255.0; b1 = src.at<Vec3b>(row, col)[0]; g1 = src.at<Vec3b>(row, col)[1]; r1 = src.at<Vec3b>(row, col)[2]; b2 = color[0]; g2 = color[1]; r2 = color[2]; b = b1 * w + b2 * (1.0 - w); g = g1 * w + g2 * (1.0 - w); r = r1 * w + r2 * (1.0 - w); result.at<Vec3b>(row, col)[0] = b; result.at<Vec3b>(row, col)[1] = g; result.at<Vec3b>(row, col)[2] = r; } } } imshow("背景替换", result); waitKey(0); return 0; } Mat mat_to_samples(Mat& image) { int w = image.cols; int h = image.rows; int samplecount = w * h; int dims = image.channels(); Mat points(samplecount, dims, CV_32F, Scalar(10)); int index = 0; for (int row = 0; row < h; row++) { for (int col = 0; col < w; col++) { index = row * w + col; Vec3b bgr = image.at<Vec3b>(row, col); points.at<float>(index, 0) = static_cast<int>(bgr[0]); points.at<float>(index, 1) = static_cast<int>(bgr[1]); points.at<float>(index, 2) = static_cast<int>(bgr[2]); } } return points; }
结果如下所示: