链接:https://ac.nowcoder.com/acm/problem/24953
来源:牛客网
Farmer John has decided to give each of his cows a cell phone in hopes to encourage their social interaction. This, however, requires him to set up cell phone towers on his N (1 ≤ N ≤ 10,000) pastures (conveniently numbered 1…N) so they can all communicate.
Exactly N-1 pairs of pastures are adjacent, and for any two pastures A and B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B) there is a sequence of adjacent pastures such that A is the first pasture in the sequence and B is the last. Farmer John can only place cell phone towers in the pastures, and each tower has enough range to provide service to the pasture it is on and all pastures adjacent to the pasture with the cell tower.
Help him determine the minimum number of towers he must install to provide cell phone service to each pasture.
输入描述:
大意是在一个树上选取一些点使得这棵树能够被全部覆盖,即一个点可以覆盖所有与之相连的边,此又称为最小支配集
我更习惯叫他状态机模型,因为不同的状态存在不同的转化关系;
考虑动态规划时 f[i][0] 选择i的最少覆盖方案 f[i][1] 选择i的儿子的最少覆盖方案 f[i][2] 选择i的父亲的最少覆盖方案 f[i][0]+=min{f[son][0],f[son][1],f[son][2]}; f[i][2]+=min(f[son][1],f[son][2]) f[i][1]的则较为复杂,因为f[i][1]成立的前提是其儿子中至少有一个选取f[i][0],即选取自身,因此要做如下讨论 如果u无子节点 f[i][1]=INF 否则 f[i][1]+=min(f[i][0],f[i][1])+inc. ; 其中inc.表示一个变化项,inc=0 if exits f[i][0] < f[i][1] else inc=min{f[i][0]-f[i][1]} (没有f[son][0]小于f[son][1]的就选二者差最小的)
#include<bits/stdc++.h> using namespace std; #define N 10010 int n; int e[N*2],ne[N*2],h[N],idx=0; int f[N][3]; void add(int a,int b){ e[idx]=b,ne[idx]=h[a],h[a]=idx++; } void dfs(int u,int pre){ f[u][0]=1,f[u][1] = f[u][2] = 0; bool flag=true; int tmp=0x3f3f3f3f; for(int i=h[u];~i;i=ne[i]){ int j=e[i]; if(j==pre) continue; dfs(j,u); f[u][2]+=min(f[j][1],f[j][0]); f[u][0]+=min(min(f[j][0],f[j][1]),f[j][2]); if(f[j][0]<=f[j][1]){ flag=false; f[u][1]+=f[j][0]; } else{ f[u][1]+=f[j][1]; tmp=min(tmp,f[j][0]-f[j][1]); } } if(flag) f[u][1]+=tmp; } int main(){ memset(f,0x3f,sizeof f); memset(h,-1,sizeof h); scanf("%d",&n); for(int i=1;i<n;i++){ int a,b; scanf("%d%d",&a,&b); add(a,b),add(b,a); } dfs(1,-1); int ans=min(f[1][0],f[1][1]); cout << ans << endl; return 0; }