转载地址:http://blog.csdn.net/smcdef/article/details/77387975
Linus Torvalds在2011年3月17日的ARM Linux邮件列表宣称“this whole ARM thing is a fucking pain in the ass”,引发ARM Linux社区的地震,随后ARM社区进行了一系列的重大修正。在过去的ARM Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx中充斥着大量的垃圾代码,相当多数的代码只是在描述板级细节,而这些板级细节对于内核来讲,不过是垃圾,如板上的platform设备、resource、i2c_board_info、spi_board_info以及各种硬件的platform_data。 社区必须改变这种局面,于是PowerPC等其他体系架构下已经使用的Flattened Device Tree(FDT)进入ARM社区的视野。Device Tree是一种描述硬件的数据结构,它起源于OpenFirmware(OF)。在Linux2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx,采用Device Tree后,许多硬件的细节可以直接透过它传递给Linux,而不再需要在kernel中进行大量的冗余编码。
Device Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。所谓属性,其实就是成对出现的name和value。在Device Tree中,可描述的信息包括(原先这些信息大多被hard code到kernel中):
它基本上就是画一棵电路板上CPU、总线、设备组成的树,Bootloader会将这棵树传递给内核,然后内核可以识别这棵树,并根据它展开出Linux内核中的platform_device、i2c_client、spi_device等设备。这些设备用到的内存、IRQ等资源,也被传递给了kernel,kernel会将这些资源绑定给展开的相应的设备。
Device Tree文件的格式为dts,包含的头文件格式为dtsi,dts文件是一种人可以看懂的编码格式。但是uboot和linux不能直接识别,他们只能识别二进制文件,所以需要把dts文件编译成dtb文件。dtb文件是一种可以被kernel和uboot识别的二进制文件。把dts编译成dtb文件的工具是dtc。Linux源码目录下scripts/dtc目录包含dtc工具的源码。在Linux的scripts/dtc目录下除了提供dtc工具外,也可以自己安装dtc工具,linux下执行:sudo apt-get install device-tree-compiler安装dtc工具。其中还提供了一个fdtdump的工具,可以反编译dtb文件。dts和dtb文件的转换如图1所示。
dtc工具的使用方法是:dtc –I dts –O dtb –o xxx.dtb xxx.dts,即可生成dts文件对应的dtb文件了。
fdtdump工具使用,Linux终端执行ftddump –h,输出以下信息:
fdtdump -h
Usage: fdtdump [options]
Options: -[dshV]
-d, –debug Dump debug information while decoding the file
-s, –scan Scan for an embedded fdt in file
-h, –help Print this help and exit
-V, –version Print version and exit
本文采用s5pv21_smc.dtb文件为例说明fdtdump工具的使用。Linux终端执行fdtdump –sd s5pv21_smc.dtb > s5pv21_smc.txt,打开s5pv21_smc.txt文件,部分输出信息如下所示:
// magic: 0xd00dfeed
// totalsize: 0xce4 (3300)
// off_dt_struct: 0x38
// off_dt_strings: 0xc34
// off_mem_rsvmap: 0x28
// version: 17
// last_comp_version: 16
// boot_cpuid_phys: 0x0
// size_dt_strings: 0xb0
// size_dt_struct: 0xbfc
以上信息便是Device Tree文件头信息,存储在dtb文件的开头部分。在Linux内核中使用struct fdt_header结构体描述。struct fdt_header结构体定义在scripts\dtc\libfdt\fdt.h文件中。
struct fdt_header { fdt32_t magic; /* magic word FDT_MAGIC */ fdt32_t totalsize; /* total size of DT block */ fdt32_t off_dt_struct; /* offset to structure */ fdt32_t off_dt_strings; /* offset to strings */ fdt32_t off_mem_rsvmap; /* offset to memory reserve map */ fdt32_t version; /* format version */ fdt32_t last_comp_version; /* last compatible version */ /* version 2 fields below */ fdt32_t boot_cpuid_phys; /* Which physical CPU id we're booting on */ /* version 3 fields below */ fdt32_t size_dt_strings; /* size of the strings block */ /* version 17 fields below */ fdt32_t size_dt_struct; /* size of the structure block */ };
fdtdump工具的输出信息即是以上结构中每一个成员的值,struct fdt_header结构体包含了Device Tree的私有信息。例如: fdt_header.magic是fdt的魔数,固定值为0xd00dfeed,fdt_header.totalsize是fdt文件的大小。使用二进制工具打开s5pv21_smc.dtb验证。s5pv21_smc.dtb二进制文件头信息如图2所示。从图2中可以得到Device Tree的文件是以大端模式储存。并且,头部信息和fdtdump的输出信息一致。
Device Tree中的节点信息举例如图3所示。
通过以上分析,可以得到Device Tree文件结构如图5所示。dtb的头部首先存放的是fdt_header的结构体信息,接着是填充区域,填充大小为off_dt_struct – sizeof(struct fdt_header),填充的值为0。接着就是struct fdt_property结构体的相关信息。最后是dt_string部分。
Device Tree源文件的结构分为header、fill_area、dt_struct及dt_string四个区域。fill_area区域填充数值0。节点(node)信息使用struct fdt_node_header结构体描述。属性信息使用struct fdt_property结构体描述。各个结构体信息如下:
struct fdt_node_header { fdt32_t tag; char name[ 0]; }; struct fdt_property { fdt32_t tag; fdt32_t len; fdt32_t nameoff; char data[ 0]; };
struct fdt_node_header描述节点信息,tag是标识node的起始结束等信息的标志位,name指向node名称的首地址。tag的取值如下:
#define FDT_BEGIN_NODE 0x1 /* Start node: full name */ #define FDT_END_NODE 0x2 /* End node */ #define FDT_PROP 0x3 /* Property: name off, size, content */ #define FDT_NOP 0x4 /* nop */ #define FDT_END 0x9
FDT_BEGIN_NODE和FDT_END_NODE标识node节点的起始和结束,FDT_PROP标识node节点下面的属性起始符,FDT_END标识Device Tree的结束标识符。因此,对于每个node节点的tag标识符一般为FDT_BEGIN_NODE,对于每个node节点下面的属性的tag标识符一般是FDT_PROP。
描述属性采用struct fdt_property描述,tag标识是属性,取值为FDT_PROP;len为属性值的长度(包括‘\0’,单位:字节);nameoff为属性名称存储位置相对于off_dt_strings的偏移地址。
例如:compatible = “samsung,goni”, “samsung,s5pv210”;compatible是属性名称,”samsung,goni”, “samsung,s5pv210”是属性值。compatible属性名称字符串存放的区域是dt_string。”samsung,goni”, “samsung,s5pv210”存放的位置是fdt_property.data后面。因此fdt_property.data指向该属性值。fdt_property.tag的值为属性标识,len为属性值的长度(包括‘\0’,单位:字节),此处len = 29。nameoff为compatible字符串的位置相对于off_dt_strings的偏移地址,即&compatible = nameoff + off_dt_strings。
dt_struct在Device Tree中的结构如图6所示。节点的嵌套也带来tag标识符的嵌套。
Device Tree文件结构描述就以上struct fdt_header、struct fdt_node_header及struct fdt_property三个结构体描述。kernel会根据Device Tree的结构解析出kernel能够使用的struct property结构体。kernel根据Device Tree中所有的属性解析出数据填充struct property结构体。struct property结构体描述如下:
struct property { char *name; /* property full name */ int length; /* property value length */ void *value; /* property value */ struct property *next; /* next property under the same node */ unsigned long _flags; unsigned int unique_id; struct bin_attribute attr; /* 属性文件,与sysfs文件系统挂接 */ };
总的来说,kernel根据Device Tree的文件结构信息转换成struct property结构体,并将同一个node节点下面的所有属性通过property.next指针进行链接,形成一个单链表。
kernel中究竟是如何解析Device Tree的呢?下面分析函数解析过程。函数调用过程如图7所示。kernel的C语言阶段的入口函数是init/main.c/stsrt_kernel()函数,在early_init_dt_scan_nodes()中会做以下三件事:
struct device_node { const char *name; /* node的名称,取最后一次“/”和“@”之间子串 */ const char *type; /* device_type的属性名称,没有为<NULL> */ phandle phandle; /* phandle属性值 */ const char *full_name; /* 指向该结构体结束的位置,存放node的路径全名,例如:/chosen */ struct fwnode_handle fwnode; struct property *properties; /* 指向该节点下的第一个属性,其他属性与该属性链表相接 */ struct property *deadprops; /* removed properties */ struct device_node *parent; /* 父节点 */ struct device_node *child; /* 子节点 */ struct device_node *sibling; /* 姊妹节点,与自己同等级的node */ struct kobject kobj; /* sysfs文件系统目录体现 */ unsigned long _flags; /* 当前node状态标志位,见/include/linux/of.h line124-127 */ void *data; }; /* flag descriptions (need to be visible even when !CONFIG_OF) */ #define OF_DYNAMIC 1 /* node and properties were allocated via kmalloc */ #define OF_DETACHED 2 /* node has been detached from the device tree*/ #define OF_POPULATED 3 /* device already created for the node */ #define OF_POPULATED_BUS 4 /* of_platform_populate recursed to children of this node */
struct device_node结构体中的每个成员作用已经备注了注释信息,下面分析以上信息是如何得来的。Device Tree的解析首先从unflatten_device_tree()开始,代码列出如下:
/** * unflatten_device_tree - create tree of device_nodes from flat blob * * unflattens the device-tree passed by the firmware, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used. */ void __init unflatten_device_tree( void ) { __unflatten_device_tree(initial_boot_params, &of_root, early_init_dt_alloc_memory_arch); /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ of_alias_scan(early_init_dt_alloc_memory_arch); } /** * __unflatten_device_tree - create tree of device_nodes from flat blob * * unflattens a device-tree, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used. * @blob: The blob to expand * @mynodes: The device_node tree created by the call * @dt_alloc: An allocator that provides a virtual address to memory * for the resulting tree */ static void __unflatten_device_tree( const void *blob, struct device_node **mynodes, void * (*dt_alloc)(u64 size, u64 align)) { unsigned long size; int start; void *mem; /* 省略部分不重要部分 */ /* First pass, scan for size */ start = 0; size = ( unsigned long)unflatten_dt_node(blob, NULL, &start, NULL, NULL, 0, true); size = ALIGN(size, 4); /* Allocate memory for the expanded device tree */ mem = dt_alloc(size + 4, __alignof__( struct device_node)); memset(mem, 0, size); /* Second pass, do actual unflattening */ start = 0; unflatten_dt_node(blob, mem, &start, NULL, mynodes, 0, false); }
分析以上代码,在unflatten_device_tree()中,调用函数__unflatten_device_tree(),参数initial_boot_params指向Device Tree在内存中的首地址,of_root在经过该函数处理之后,会指向根节点,early_init_dt_alloc_memory_arch是一个函数指针,为struct device_node和struct property结构体分配内存的回调函数(callback)。在__unflatten_device_tree()函数中,两次调用unflatten_dt_node()函数,第一次是为了得到Device Tree转换成struct device_node和struct property结构体需要分配的内存大小,第二次调用才是具体填充每一个struct device_node和struct property结构体。__unflatten_device_tree()代码列出如下:
/** * unflatten_dt_node - Alloc and populate a device_node from the flat tree * @blob: The parent device tree blob * @mem: Memory chunk to use for allocating device nodes and properties * @poffset: pointer to node in flat tree * @dad: Parent struct device_node * @nodepp: The device_node tree created by the call * @fpsize: Size of the node path up at the current depth. * @dryrun: If true, do not allocate device nodes but still calculate needed * memory size */ static void * unflatten_dt_node( const void *blob, void *mem, int *poffset, struct device_node *dad, struct device_node **nodepp, unsigned long fpsize, bool dryrun) { const __be32 *p; struct device_node *np; struct property *pp, **prev_pp = NULL; const char *pathp; unsigned int l, allocl; static int depth; int old_depth; int offset; int has_name = 0; int new_format = 0; /* 获取node节点的name指针到pathp中 */ pathp = fdt_get_name(blob, *poffset, &l); if (!pathp) return mem; allocl = ++l; /* version 0x10 has a more compact unit name here instead of the full * path. we accumulate the full path size using "fpsize", we'll rebuild * it later. We detect this because the first character of the name is * not '/'. */ if ((*pathp) != '/') { new_format = 1; if (fpsize == 0) { /* root node: special case. fpsize accounts for path * plus terminating zero. root node only has '/', so * fpsize should be 2, but we want to avoid the first * level nodes to have two '/' so we use fpsize 1 here */ fpsize = 1; allocl = 2; l = 1; pathp = ""; } else { /* account for '/' and path size minus terminal 0 * already in 'l' */ fpsize += l; allocl = fpsize; } } /* 分配struct device_node内存,包括路径全称大小 */ np = unflatten_dt_alloc(&mem, sizeof( struct device_node) + allocl, __alignof__( struct device_node)); if (!dryrun) { char *fn; of_node_init(np); /* 填充full_name,full_name指向该node节点的全路径名称字符串 */ np->full_name = fn = (( char *)np) + sizeof(*np); if (new_format) { /* rebuild full path for new format */ if (dad && dad->parent) { strcpy(fn, dad->full_name); fn += strlen(fn); } *(fn++) = '/'; } memcpy(fn, pathp, l); /* 节点挂接到相应的父节点、子节点和姊妹节点 */ prev_pp = &np->properties; if (dad != NULL) { np->parent = dad; np->sibling = dad->child; dad->child = np; } } /* 处理该node节点下面所有的property */ for (offset = fdt_first_property_offset(blob, *poffset); (offset >= 0); (offset = fdt_next_property_offset(blob, offset))) { const char *pname; u32 sz; if (!(p = fdt_getprop_by_offset(blob, offset, &pname, &sz))) { offset = -FDT_ERR_INTERNAL; break; } if (pname == NULL) { pr_info( "Can't find property name in list !\n"); break; } if ( strcmp(pname, "name") == 0) has_name = 1; pp = unflatten_dt_alloc(&mem, sizeof( struct property), __alignof__( struct property)); if (!dryrun) { /* We accept flattened tree phandles either in * ePAPR-style "phandle" properties, or the * legacy "linux,phandle" properties. If both * appear and have different values, things * will get weird. Don't do that. */ /* 处理phandle,得到phandle值 */ if (( strcmp(pname, "phandle") == 0) || ( strcmp(pname, "linux,phandle") == 0)) { if (np->phandle == 0) np->phandle = be32_to_cpup(p); } /* And we process the "ibm,phandle" property * used in pSeries dynamic device tree * stuff */ if ( strcmp(pname, "ibm,phandle") == 0) np->phandle = be32_to_cpup(p); pp->name = ( char *)pname; pp->length = sz; pp->value = (__be32 *)p; *prev_pp = pp; prev_pp = &pp->next; } } /* with version 0x10 we may not have the name property, recreate * it here from the unit name if absent */ /* 为每个node节点添加一个name的属性 */ if (!has_name) { const char *p1 = pathp, *ps = pathp, *pa = NULL; int sz; /* 属性name的value值为node节点的名称,取“/”和“@”之间的子串 */ while (*p1) { if ((*p1) == '@') pa = p1; if ((*p1) == '/') ps = p1 + 1; p1++; } if (pa < ps) pa = p1; sz = (pa - ps) + 1; pp = unflatten_dt_alloc(&mem, sizeof( struct property) + sz, __alignof__( struct property)); if (!dryrun) { pp->name = "name"; pp->length = sz; pp->value = pp + 1; *prev_pp = pp; prev_pp = &pp->next; memcpy(pp->value, ps, sz - 1); (( char *)pp->value)[sz - 1] = 0; } } /* 填充device_node结构体中的name和type成员 */ if (!dryrun) { *prev_pp = NULL; np->name = of_get_property(np, "name", NULL); np->type = of_get_property(np, "device_type", NULL); if (!np->name) np->name = "<NULL>"; if (!np->type) np->type = "<NULL>"; } old_depth = depth; *poffset = fdt_next_node(blob, *poffset, &depth); if (depth < 0) depth = 0; /* 递归调用node节点下面的子节点 */ while (*poffset > 0 && depth > old_depth) mem = unflatten_dt_node(blob, mem, poffset, np, NULL, fpsize, dryrun); if (*poffset < 0 && *poffset != -FDT_ERR_NOTFOUND) pr_err( "unflatten: error %d processing FDT\n", *poffset); /* * Reverse the child list. Some drivers assumes node order matches .dts * node order */ if (!dryrun && np->child) { struct device_node *child = np->child; np->child = NULL; while (child) { struct device_node *next = child->sibling; child->sibling = np->child; np->child = child; child = next; } } if (nodepp) *nodepp = np; return mem; }
通过以上函数处理就得到了所有的struct device_node结构体,为每一个node都会自动添加一个名称为“name”的property,property.length的值为当前node的名称取最后一个“/”和“@”之间的子串(包括‘\0’)。例如:/serial@e2900800,则length = 7,property.value = device_node.name = “serial”。
经过以上解析,Device Tree的数据已经全部解析出具体的struct device_node和struct property结构体,下面需要和具体的device进行绑定。首先讲解platform_device和device_node的绑定过程。在arch/arm/kernel/setup.c文件中,customize_machine()函数负责填充struct platform_device结构体。函数调用过程如图8所示。
代码分析如下:
const struct of_device_id of_default_bus_match_table[] = { { .compatible = "simple-bus", }, { .compatible = "simple-mfd", }, #ifdef CONFIG_ARM_AMBA { .compatible = "arm,amba-bus", }, #endif /* CONFIG_ARM_AMBA */ {} /* Empty terminated list */ }; int of_platform_populate( struct device_node *root, const struct of_device_id *matches, const struct of_dev_auxdata *lookup, struct device *parent) { struct device_node *child; int rc = 0; /* 获取根节点 */ root = root ? of_node_get(root) : of_find_node_by_path( "/"); if (!root) return -EINVAL; /* 为根节点下面的每一个节点创建platform_device结构体 */ for_each_child_of_node(root, child) { rc = of_platform_bus_create(child, matches, lookup, parent, true); if (rc) { of_node_put(child); break; } } /* 更新device_node flag标志位 */ of_node_set_flag(root, OF_POPULATED_BUS); of_node_put(root); return rc; } static int of_platform_bus_create( struct device_node *bus, const struct of_device_id *matches, const struct of_dev_auxdata *lookup, struct device *parent, bool strict) { const struct of_dev_auxdata *auxdata; struct device_node *child; struct platform_device *dev; const char *bus_id = NULL; void *platform_data = NULL; int rc = 0; /* 只有包含"compatible"属性的node节点才会生成相应的platform_device结构体 */ /* Make sure it has a compatible property */ if (strict && (!of_get_property(bus, "compatible", NULL))) { return 0; } /* 省略部分代码 */ /* * 针对节点下面得到status = "ok" 或者status = "okay"或者不存在status属性的 * 节点分配内存并填充platform_device结构体 */ dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent); if (!dev || !of_match_node(matches, bus)) return 0; /* 递归调用节点解析函数,为子节点继续生成platform_device结构体,前提是父节点 * 的“compatible” = “simple-bus”,也就是匹配of_default_bus_match_table结构体中的数据 */ for_each_child_of_node(bus, child) { rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict); if (rc) { of_node_put(child); break; } } of_node_set_flag(bus, OF_POPULATED_BUS); return rc; }
总的来说,当of_platform_populate()函数执行完毕,kernel就为DTB中所有包含compatible属性名的第一级node创建platform_device结构体,并向平台设备总线注册设备信息。如果第一级node的compatible属性值等于“simple-bus”、“simple-mfd”或者”arm,amba-bus”的话,kernel会继续为当前node的第二级包含compatible属性的node创建platform_device结构体,并注册设备。Linux系统下的设备大多都是挂载在平台总线下的,因此在平台总线被注册后,会根据of_root节点的树结构,去寻找该总线的子节点,所有的子节点将被作为设备注册到该总线上。
经过customize_machine()函数的初始化,DTB已经转换成platform_device结构体,这其中就包含i2c adapter设备,不同的SoC需要通过平台设备总线的方式自己实现i2c adapter设备的驱动。例如:i2c_adapter驱动的probe函数中会调用i2c_add_numbered_adapter()注册adapter驱动,函数流执行如图9所示。
在of_i2c_register_devices()函数内部便利i2c节点下面的每一个子节点,并为子节点(status = “disable”的除外)创建i2c_client结构体,并与子节点的device_node挂接。其中i2c_client的填充是在i2c_new_device()中进行的,最后device_register()。在构建i2c_client的时候,会对node下面的compatible属性名称的厂商名字去除作为i2c_client的name。例如:compatible = “maxim,ds1338”,则i2c_client->name = “ds1338”。
kernel启动流程为start_kernel()→rest_init()→kernel_thread():kernel_init()→do_basic_setup()→driver_init()→of_core_init(),在of_core_init()函数中在sys/firmware/devicetree/base目录下面为设备树展开成sysfs的目录和二进制属性文件,所有的node节点就是一个目录,所有的property属性就是一个二进制属性文件。