Redis教程

Redis和布隆过滤器

本文主要是介绍Redis和布隆过滤器,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

直观的说,bloomFilter算法类似一个hash表,用来判断某个元素(key)是否在某个集合中。redis经常会涉及到缓存命中的问题,如果简单地判断是都存在,用布隆过滤器是很好的。

算法过程:
1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数
2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0
3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1
4. 判断某个key是否在集合时,用k个hash函数计算出k个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。

优点:不需要存储key,节省空间

缺点:
1. 算法判断key在集合中时,有一定的概率key其实不在集合中
2. 无法删除

典型的应用场景:
某些存储系统的设计中,会存在空查询缺陷:当查询一个不存在的key时,需要访问慢设备,导致效率低下。
比如一个前端页面的缓存系统,可能这样设计:先查询某个页面在本地是否存在,如果存在就直接返回,如果不存在,就从后端获取。但是当频繁从缓存系统查询一个页面时,缓存系统将会频繁请求后端,把压力导入后端。

这是只要增加一个bloom算法的服务,后端插入一个key时,在这个服务中设置一次
需要查询后端时,先判断key在后端是否存在,这样就能避免后端的压力。

这篇关于Redis和布隆过滤器的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!