ArrayList 是一个数组队列,相当于 动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。
ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
ArrayList 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。稍后,我们会比较List的“快速随机访问”和“通过Iterator迭代器访问”的效率。
ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。
ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。
和Vector不同,ArrayList中的操作不是线程安全的!所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。
下面让我们翻开ArrayList的源代码,看看一些常用的方法属性,以及一些需要注意的地方。
ArrayList属性主要就是当前数组长度size,以及存放数组的对象elementData数组,除此之外还有一个经常用到的属性就是从AbstractList继承过来的modCount属性,代表ArrayList集合的修改次数。
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable { // 序列化id private static final long serialVersionUID = 8683452581122892189L; // 默认初始的容量 private static final int DEFAULT_CAPACITY = 10; // 一个空对象 private static final Object[] EMPTY_ELEMENTDATA = new Object[0]; // 一个空对象,如果使用默认构造函数创建,则默认对象内容默认是该值 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = new Object[0]; // 当前数据对象存放地方,当前对象不参与序列化 transient Object[] elementData; // 当前数组长度 private int size; // 数组最大长度 private static final int MAX_ARRAY_SIZE = 2147483639; // 省略方法。。 }
无参构造函数
如果不传入参数,则使用默认无参构建方法创建ArrayList对象,如下:
public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; }
注意:此时我们创建的ArrayList对象中的elementData中的长度是1,size是0,当进行第一次add的时候,elementData将会变成默认的长度:10.
带int类型的构造函数
如果传入参数,则代表指定ArrayList的初始数组长度,传入参数如果是大于等于0,则使用用户的参数初始化,如果用户传入的参数小于0,则抛出异常,构造方法如下:
public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } }
带Collection对象的构造函数
1)将collection对象转换成数组,然后将数组的地址的赋给elementData。
2)更新size的值,同时判断size的大小,如果是size等于0,直接将空对象EMPTY_ELEMENTDATA的地址赋给elementData
3)如果size的值大于0,则执行Arrays.copy方法,把collection对象的内容(可以理解为深拷贝)copy到elementData中。
注意:this.elementData = arg0.toArray(); 这里执行的简单赋值时浅拷贝,所以要执行Arrays,copy 做深拷贝
public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } }
add方法
add的方法有两个,一个是带一个参数的,一个是带两个参数的,下面我们一个个讲解。
add(E e) 方法
add主要的执行逻辑如下:
1)确保数组已使用长度(size)加1之后足够存下 下一个数据
2)修改次数modCount 标识自增1,如果当前数组已使用长度(size)加1后的大于当前的数组长度,则调用grow方法,增长数组,grow方法会将当前数组的长度变为原来容量的1.5倍。
3)确保新增的数据有地方存储之后,则将新元素添加到位于size的位置上。
4)返回添加成功布尔值。
添加元素方法入口:
public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; }
确保添加的元素有地方存储,当第一次添加元素的时候this.size+1 的值是1,所以第一次添加的时候会将当前elementData数组的长度变为10:
private void ensureCapacityInternal(int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); }
将修改次数(modCount)自增1,判断是否需要扩充数组长度,判断条件就是用当前所需的数组最小长度与数组的长度对比,如果大于0,则增长数组长度。
private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); }
如果当前的数组已使用空间(size)加1之后 大于数组长度,则增大数组容量,扩大为原来的1.5倍。
private void grow(int arg0) { int arg1 = this.elementData.length; int arg2 = arg1 + (arg1 >> 1); if (arg2 - arg0 < 0) { arg2 = arg0; } if (arg2 - 2147483639 > 0) { arg2 = hugeCapacity(arg0); } this.elementData = Arrays.copyOf(this.elementData, arg2); }
add(int index, E element)方法
这个方法其实和上面的add类似,该方法可以按照元素的位置,指定位置插入元素,具体的执行逻辑如下:
1)确保数插入的位置小于等于当前数组长度,并且不小于0,否则抛出异常
2)确保数组已使用长度(size)加1之后足够存下 下一个数据
3)修改次数(modCount)标识自增1,如果当前数组已使用长度(size)加1后的大于当前的数组长度,则调用grow方法,增长数组
4)grow方法会将当前数组的长度变为原来容量的1.5倍。
5)确保有足够的容量之后,使用System.arraycopy 将需要插入的位置(index)后面的元素统统往后移动一位。
6)将新的数据内容存放到数组的指定位置(index)上
public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; }
注意:使用该方法的话将导致指定位置后面的数组元素全部重新移动,即往后移动一位。
get方法
返回指定位置上的元素,
public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); }
set方法
确保set的位置小于当前数组的长度(size)并且大于0,获取指定位置(index)元素,然后放到oldValue存放,将需要设置的元素放到指定的位置(index)上,然后将原来位置上的元素oldValue返回给用户。
public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; }
contains方法
调用indexOf方法,遍历数组中的每一个元素作对比,如果找到对于的元素,则返回true,没有找到则返回false。
public boolean contains(Object o) { return indexOf(o) >= 0; }
public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; }
根据索引remove
1)判断索引有没有越界
2)自增修改次数
3)将指定位置(index)上的元素保存到oldValue
4)将指定位置(index)上的元素都往前移动一位
5)将最后面的一个元素置空,好让垃圾回收器回收
6)将原来的值oldValue返回
public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; }
注意:调用这个方法不会缩减数组的长度,只是将最后一个数组元素置空而已。
根据对象remove
循环遍历所有对象,得到对象所在索引位置,然后调用fastRemove方法,执行remove操作
public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; }
定位到需要remove的元素索引,先将index后面的元素往前面移动一位(调用System.arraycooy实现),然后将最后一个元素置空。
clear方法
添加操作次数(modCount),将数组内的元素都置空,等待垃圾收集器收集,不减小数组容量。
public void clear() { modCount++; // clear to let GC do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; }
sublist方法
我们看到代码中是创建了一个ArrayList 类里面的一个内部类SubList对象,传入的值中第一个参数时this参数,其实可以理解为返回当前list的部分视图,真实指向的存放数据内容的地方还是同一个地方,如果修改了sublist返回的内容的话,那么原来的list也会变动。
public List<E> subList(int arg0, int arg1) { subListRangeCheck(arg0, arg1, this.size); return new ArrayList.SubList(this, 0, arg0, arg1); }
trimToSize方法
1)修改次数加1
2)将elementData中空余的空间(包括null值)去除,例如:数组长度为10,其中只有前三个元素有值,其他为空,那么调用该方法之后,数组的长度变为3.
public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } }
iterator方法
interator方法返回的是一个内部类,由于内部类的创建默认含有外部的this指针,所以这个内部类可以调用到外部类的属性。
public Iterator<E> iterator() { return new Itr(); }
一般的话,调用完iterator之后,我们会使用iterator做遍历,这里使用next做遍历的时候有个需要注意的地方,就是调用next的时候,可能会引发ConcurrentModificationException,当修改次数,与期望的修改次数(调用iterator方法时候的修改次数)不一致的时候,会发生该异常,详细我们看一下代码实现:
@SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; }
expectedModCount这个值是在用户调用ArrayList的iterator方法时候确定的,但是在这之后用户add,或者remove了ArrayList的元素,那么modCount就会改变,那么这个值就会不相等,将会引发ConcurrentModificationException异常,这个是在多线程使用情况下,比较常见的一个异常。
final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); }
System.arraycopy 方法
参数 | 说明 |
src | 原数组 |
srcPos | 原数组 |
dest | 目标数组 |
destPos | 目标数组的起始位置 |
length | 要复制的数组元素的数目 |
Arrays.copyOf方法
其实Arrays.copyOf底层也是调用System.arraycopy实现的源码如下:
//基本数据类型(其他类似byte,short···) public static int[] copyOf(int[] original, int newLength) { int[] copy = new int[newLength]; System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength)); return copy; }
ArrayList总体来说比较简单,不过ArrayList还有以下一些特点:
ArrayList自己实现了序列化和反序列化的方法,因为它自己实现了 private void writeObject(java.io.ObjectOutputStream s)和 private void readObject(java.io.ObjectInputStream s) 方法
ArrayList基于数组方式实现,无容量的限制(会扩容)
添加元素时可能要扩容(所以最好预判一下),删除元素时不会减少容量(若希望减少容量,trimToSize()),删除元素时,将删除掉的位置元素置为null,下次gc就会回收这些元素所占的内存空间。
线程不安全
add(int index, E element):添加元素到数组中指定位置的时候,需要将该位置及其后边所有的元素都整块向后复制一位
get(int index):获取指定位置上的元素时,可以通过索引直接获取(O(1))
remove(Object o)需要遍历数组
remove(int index)不需要遍历数组,只需判断index是否符合条件即可,效率比remove(Object o)高
contains(E)需要遍历数组
使用iterator遍历可能会引发多线程异常
关于ArrayList的源码,给出几点比较重要的总结:
首先来看Arrays.copyof()方法。它有很多个重载的方法,但实现思路都是一样的,我们来看泛型版本的源码:
public static <T> T[] copyOf(T[] original, int newLength) { return (T[]) copyOf(original, newLength, original.getClass()); }
很明显调用了另一个copyof方法,该方法有三个参数,最后一个参数指明要转换的数据的类型,其源码如下:
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) { T[] copy = ((Object)newType == (Object)Object[].class) ? (T[]) new Object[newLength] : (T[]) Array.newInstance(newType.getComponentType(), newLength); System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength)); return copy; }
这里可以很明显地看出,该方法实际上是在其内部又创建了一个长度为newlength的数组,调用System.arraycopy()方法,将原来数组中的元素复制到了新的数组中。
下面来看System.arraycopy()方法。该方法被标记了native,调用了系统的C/C++代码,在JDK中是看不到的,但在openJDK中可以看到其源码。该函数实际上最终调用了C语言的memmove()函数,因此它可以保证同一个数组内元素的正确复制和移动,比一般的复制方法的实现效率要高很多,很适合用来批量处理数组。Java强烈推荐在复制大量数组元素时用该方法,以取得更高的效率。
第一个,Object[] toArray()方法。该方法有可能会抛出java.lang.ClassCastException异常,如果直接用向下转型的方法,将整个ArrayList集合转变为指定类型的Array数组,便会抛出该异常,而如果转化为Array数组时不向下转型,而是将每个元素向下转型,则不会抛出该异常,显然对数组中的元素一个个进行向下转型,效率不高,且不太方便。
第二个, T[] toArray(T[] a)方法。该方法可以直接将ArrayList转换得到的Array进行整体向下转型(转型其实是在该方法的源码中实现的),且从该方法的源码中可以看出,参数a的大小不足时,内部会调用Arrays.copyOf方法,该方法内部创建一个新的数组返回,因此对该方法的常用形式如下:
public static Integer[] vectorToArray2(ArrayList<Integer> v) { Integer[] newText = (Integer[])v.toArray(new Integer[0]); return newText; }
原文来源:
https://blog.csdn.net/fighterandknight/article/details/61240861
https://github.com/francistao/LearningNotes/blob/master/Part2/JavaSE/ArrayList%E6%BA%90%E7%A0%81%E5%89%96%E6%9E%90.md