数据结构(datastructure)是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。(百度百科)
一句话解释:存数据的,而且是在内存中存!
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
一句话描述:算法是一种解决特定问题的思路
比如:LRU算法,最近最少使用,解决的就是当空间不够用时,应该淘汰谁的问题,这是一种策略,不是唯一的答案,所以算法无对错,只有好和不好。
数据结构和算法本质上是”快“和"省"。所以代码的执行效率是非常重要的度量. 我们采用时间复杂度和空间复杂度来计算
大O复杂度表示法
上例中T(n)=O(n*n),也就是代码执行时间随着数据规模的增加而平方增长.
即:上例中的时间复杂度为O( n2)
时间复杂度也成为渐进时间复杂度。
计算时间复杂度的技巧
比如把上面两段代码合在一起
时间复杂度为O( n2)
嵌套代码的复杂度等于嵌套内外代码复杂度的乘积(乘法法则)
常见的时间复杂度
空间复杂度全称是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系
比如将一个数组拷贝到另一个数组中,就是相当于空间扩大了一倍:T(n)=O(2n),忽略系数。即为:
O(n),这是一个非常常见的空间复杂度,比如跳跃表、hashmap的扩容
此外还有:O(1),比如原地排序、O(n ) 此种占用空间过大
由于现在硬件相对比较便宜,所以在开发中常常会利用空间来换时间,比如缓存技术
典型的数据结构中空间换时间是:跳跃表
在实际开发中我们也更关注代码的时间复杂度,而用于执行效率的提升