Java教程

01_数据结构与算法介绍

本文主要是介绍01_数据结构与算法介绍,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

一、数据结构介绍

1.什么是数据结构

数据结构(datastructure)是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。(百度百科)
一句话解释:存数据的,而且是在内存中存!

2.常见的数据结构

在这里插入图片描述

二、算法介绍

1.什么是算法

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。

一句话描述:算法是一种解决特定问题的思路

比如:LRU算法,最近最少使用,解决的就是当空间不够用时,应该淘汰谁的问题,这是一种策略,不是唯一的答案,所以算法无对错,只有好和不好。

2.常见算法在这里插入图片描述

三、算法复杂度介绍

数据结构和算法本质上是”快“和"省"。所以代码的执行效率是非常重要的度量. 我们采用时间复杂度空间复杂度来计算

1.时间复杂度

大O复杂度表示法
在这里插入图片描述
上例中T(n)=O(n*n),也就是代码执行时间随着数据规模的增加而平方增长.
即:上例中的时间复杂度为O( n2)
时间复杂度也成为渐进时间复杂度
计算时间复杂度的技巧

  • 计算循环执行次数最多的代码
  • 总复杂度=量级最大的复杂度

比如把上面两段代码合在一起
在这里插入图片描述
时间复杂度为O( n2)
嵌套代码的复杂度等于嵌套内外代码复杂度的乘积(乘法法则)
常见的时间复杂度

  • O(1)
    这种是最简单的,也是最好理解的,就是常量级
    不是只执行了一行代码,只要代码的执行不随着数据规模(n)的增加而增加,就是常量级
    在实际应用中,通常使用冗余字段存储来将O(n)变成O(1),比如Redis中有很多这样的操作用来提升访问性能
    比如:SDS、字典、跳跃表等
  • O(logn)、O(nlogn)
    在这里插入图片描述
    2 =n
    x=log n
    忽略系数为logn
    T(n)=O(logn)
    如果将该代码执行n遍
    则时间复杂度记录为:T(n)=O(n*logn),即O(nlogn)
    快速排序、归并排序的时间复杂度都是O(nlogn)
  • O(n)
    很多线性表的操作都是O(n),这也是最常见的一个时间复杂度
    比如:数组的插入删除、链表的遍历等
  • O(m+n)
    代码的时间复杂度由两个数据的规模来决定
    在这里插入图片描述
    m和n是代码的两个数据规模,而且不能确定谁更大,此时代码的复杂度为两段时间复杂度之和,

    T(n)=O(m+n),记作:O(m+n)
  • O(m*n)
    在这里插入图片描述
    根据乘法法则代码的复杂度为两段时间复杂度之积,即
    T(n)=O(mn),记作:O(mn)
    当m==n时,为O( )

2.空间复杂度

空间复杂度全称是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系
比如将一个数组拷贝到另一个数组中,就是相当于空间扩大了一倍:T(n)=O(2n),忽略系数。即为:
O(n),这是一个非常常见的空间复杂度,比如跳跃表、hashmap的扩容
此外还有:O(1),比如原地排序、O(n ) 此种占用空间过大
由于现在硬件相对比较便宜,所以在开发中常常会利用空间来换时间,比如缓存技术
典型的数据结构中空间换时间是:跳跃表
在实际开发中我们也更关注代码的时间复杂度,而用于执行效率的提升

这篇关于01_数据结构与算法介绍的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!