`public class AtomicInteger extends Number implements java.io.Serializable { // setup to use Unsafe.compareAndSwapInt for updates private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset; static { try { // 计算变量 value 在类对象中的偏移 valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } private volatile int value; public final boolean compareAndSet(int expect, int update) { /* * compareAndSet 实际上只是一个壳子,主要的逻辑封装在 Unsafe 的 * compareAndSwapInt 方法中 */ return unsafe.compareAndSwapInt(this, valueOffset, expect, update); } // ...... } public final class Unsafe { // compareAndSwapInt 是 native 类型的方法,继续往下看 public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x); // ...... }`
`// unsafe.cpp /* * 这个看起来好像不像一个函数,不过不用担心,不是重点。UNSAFE_ENTRY 和 UNSAFE_END 都是宏, * 在预编译期间会被替换成真正的代码。下面的 jboolean、jlong 和 jint 等一些类型也都是宏: * * jni.h * typedef unsigned char jboolean; * typedef unsigned short jchar; * typedef short jshort; * typedef float jfloat; * typedef double jdouble; * * jni_md.h * typedef int jint; * #ifdef _LP64 /* 64-bit */ * typedef long jlong; * #else * typedef long long jlong; * #endif * typedef signed char jbyte; */ UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) UnsafeWrapper("Unsafe_CompareAndSwapInt"); oop p = JNIHandles::resolve(obj); // 根据偏移量,计算 value 的地址。这里的 offset 就是 AtomaicInteger 中的 valueOffset jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); // 调用 Atomic 中的函数 cmpxchg,该函数声明于 Atomic.hpp 中 return (jint)(Atomic::cmpxchg(x, addr, e)) == e; UNSAFE_END // atomic.cpp unsigned Atomic::cmpxchg(unsigned int exchange_value, volatile unsigned int* dest, unsigned int compare_value) { assert(sizeof(unsigned int) == sizeof(jint), "more work to do"); /* * 根据操作系统类型调用不同平台下的重载函数,这个在预编译期间编译器会决定调用哪个平台下的重载 * 函数。相关的预编译逻辑如下: * * atomic.inline.hpp: * #include "runtime/atomic.hpp" * * // Linux * #ifdef TARGET_OS_ARCH_linux_x86 * # include "atomic_linux_x86.inline.hpp" * #endif * * // 省略部分代码 * * // Windows * #ifdef TARGET_OS_ARCH_windows_x86 * # include "atomic_windows_x86.inline.hpp" * #endif * * // BSD * #ifdef TARGET_OS_ARCH_bsd_x86 * # include "atomic_bsd_x86.inline.hpp" * #endif * * 接下来分析 atomic_windows_x86.inline.hpp 中的 cmpxchg 函数实现 */ return (unsigned int)Atomic::cmpxchg((jint)exchange_value, (volatile jint*)dest, (jint)compare_value); }`
上面的分析看起来比较多,不过主流程并不复杂。如果不纠结于代码细节,还是比较容易看懂的。接下来,我会分析 Windows 平台下的 Atomic::cmpxchg 函数。继续往下看吧。
`// atomic_windows_x86.inline.hpp #define LOCK_IF_MP(mp) __asm cmp mp, 0 \ __asm je L0 \ __asm _emit 0xF0 \ __asm L0: inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { // alternative for InterlockedCompareExchange int mp = os::is_MP(); __asm { mov edx, dest mov ecx, exchange_value mov eax, compare_value LOCK_IF_MP(mp) cmpxchg dword ptr [edx], ecx } }`
上面的代码由 LOCK_IF_MP 预编译标识符和 cmpxchg 函数组成。为了看到更清楚一些,我们将 cmpxchg 函数中的 LOCK_IF_MP 替换为实际内容。如下:
`inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { // 判断是否是多核 CPU int mp = os::is_MP(); __asm { // 将参数值放入寄存器中 mov edx, dest // 注意: dest 是指针类型,这里是把内存地址存入 edx 寄存器中 mov ecx, exchange_value mov eax, compare_value // LOCK_IF_MP cmp mp, 0 /* * 如果 mp = 0,表明是线程运行在单核 CPU 环境下。此时 je 会跳转到 L0 标记处, * 也就是越过 _emit 0xF0 指令,直接执行 cmpxchg 指令。也就是不在下面的 cmpxchg 指令 * 前加 lock 前缀。 */ je L0 /* * 0xF0 是 lock 前缀的机器码,这里没有使用 lock,而是直接使用了机器码的形式。至于这样做的 * 原因可以参考知乎的一个回答: * https://www.zhihu.com/question/50878124/answer/123099923 */ _emit 0xF0 L0: /* * 比较并交换。简单解释一下下面这条指令,熟悉汇编的朋友可以略过下面的解释: * cmpxchg: 即“比较并交换”指令 * dword: 全称是 double word,在 x86/x64 体系中,一个 * word = 2 byte,dword = 4 byte = 32 bit * ptr: 全称是 pointer,与前面的 dword 连起来使用,表明访问的内存单元是一个双字单元 * [edx]: [...] 表示一个内存单元,edx 是寄存器,dest 指针值存放在 edx 中。 * 那么 [edx] 表示内存地址为 dest 的内存单元 * * 这一条指令的意思就是,将 eax 寄存器中的值(compare_value)与 [edx] 双字内存单元中的值 * 进行对比,如果相同,则将 ecx 寄存器中的值(exchange_value)存入 [edx] 内存单元中。 */ cmpxchg dword ptr [edx], ecx } }`
到这里 CAS 的实现过程就讲完了,CAS 的实现离不开处理器的支持。以上这么多代码,其实核心代码就是一条带lock 前缀的 cmpxchg 指令,即lock cmpxchg dword ptr [edx], ecx
。
4.ABA 问题
谈到 CAS,基本上都要谈一下 CAS 的 ABA 问题。CAS 由三个步骤组成,分别是“读取->比较->写回”。考虑这样一种情况,线程1和线程2同时执行 CAS 逻辑,两个线程的执行顺序如下:
时刻1:线程1执行读取操作,获取原值 A,然后线程被切换走
时刻2:线程2执行完成 CAS 操作将原值由 A 修改为 B
时刻3:线程2再次执行 CAS 操作,并将原值由 B 修改为 A
时刻4:线程1恢复运行,将比较值(compareValue)与原值(oldValue)进行比较,发现两个值相等。
对于很多Java工程师而言,想要提升技能,往往是自己摸索成长,不成体系的学习效果低效漫长且无助。
整理的这些资料希望对Java开发的朋友们有所参考以及少走弯路,本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。
再分享一波我的Java面试真题+视频学习详解+技能进阶书籍
CodeChina开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频】
升技能,往往是自己摸索成长,不成体系的学习效果低效漫长且无助。**
整理的这些资料希望对Java开发的朋友们有所参考以及少走弯路,本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。
再分享一波我的Java面试真题+视频学习详解+技能进阶书籍
CodeChina开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频】