C/C++教程

pytorch中如何将CPU上运行的数据模型转到GPU上运行(mnist举例)

本文主要是介绍pytorch中如何将CPU上运行的数据模型转到GPU上运行(mnist举例),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

首先贴一份在cpu上运行的代码

 1 import torch
 2 from torchvision import transforms
 3 from torchvision import datasets
 4 from torch.utils.data import DataLoader
 5 import torch.nn.functional as F
 6 import torch.optim as optim
 7 
 8 batch_size = 64
 9 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
10 train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
11 train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
12 test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
13 test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
14 
15 
16 class Net(torch.nn.Module):
17     def __init__(self):
18         super(Net, self).__init__()
19         self.l1 = torch.nn.Linear(784, 512)
20         self.l2 = torch.nn.Linear(512, 256)
21         self.l3 = torch.nn.Linear(256, 128)
22         self.l4 = torch.nn.Linear(128, 64)
23         self.l5 = torch.nn.Linear(64, 10)
24 
25     def forward(self, x):
26         x = x.view(-1, 784)
27         x = F.relu(self.l1(x))
28         x = F.relu(self.l2(x))
29         x = F.relu(self.l3(x))
30         x = F.relu(self.l4(x))
31         return self.l5(x)
32 
33 
34 model = Net()
35 
36 criterion = torch.nn.CrossEntropyLoss()
37 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
38 
39 
40 def train(epoch):
41     running_loss = 0.0
42     for batch_idx, data in enumerate(train_loader, 0):
43         inputs, target = data
44         optimizer.zero_grad()
45         # forward + backward + update
46         outputs = model(inputs)
47         loss = criterion(outputs, target)
48         loss.backward()
49         optimizer.step()
50         running_loss += loss.item()
51         if batch_idx % 300 == 299:
52             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
53             running_loss = 0.0
54 
55 
56 def test():
57     correct = 0
58     total = 0
59     with torch.no_grad():
60         for data in test_loader:
61             images, labels = data
62             outputs = model(images)
63             _, predicted = torch.max(outputs.data, dim=1)
64             total += labels.size(0)
65             correct += (predicted == labels).sum().item()
66     print('Accuracy on test set: %d %%' % (100 * correct / total))
67 
68 
69 if __name__ == '__main__':
70     for epoch in range(10):
71         train(epoch)
72         test()
View Code

要在GPU上运行数据需要把一些相关的参数和模型转到GPU上

需要转换的有:model,数据,criterion(loss函数)

其中optimizer不需要转换

 

首先定义

1 device = t.device('cuda:0')

将model和criterion to(device)

1 #cuda
2 model = model.to(device)
3 criterion = criterion.to(device)

再将43行的inputs、target,46行的outputs to(device)到GPU上训练

 1 def train(epoch):
 2     running_loss = 0.0
 3     for batch_idx, data in enumerate(train_loader, 0):
 4         inputs, target = data
 5         #cuda inputs and target
 6         inputs = inputs.to(device) ###
 7         target = target.to(device) ###
 8         optimizer.zero_grad()  # noticed:  the grad return to zero before starting the loop
 9 
10         # forward + backward +update
11         outputs = model(inputs)
12         outputs = outputs.to(device) ###
13         loss = criterion(outputs, target)
14         loss.backward()
15         optimizer.step()
16 
17         running_loss += loss.item()
18         if batch_idx % 300 == 299:
19             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
20             running_loss = 0.0

再将61行的images、labels,62行的outputs to(device)到GPU上测试

 1 def test():
 2     correct = 0
 3     total = 0
 4     with t.no_grad():  # ensuring grad can not updating
 5         for data in test_loader:
 6             images, label = data
 7             #cuda images, label
 8             images = images.to(device) ###
 9             label = label.to(device) ###
10             outputs = model(images)
11             outputs = outputs.to(device) ###
12             _, predicted = t.max(outputs.data, dim=1)  # taking the max num from one_hot code
13             total += label.size(0)
14             # label's format in array that N*1 like [1,8,5,8,3,2,1,4,.....,5]. so label.size() return a array [N,1] and label.size(0) is N
15             correct += (predicted == label).sum().item()
16     print('Accurary on test set: %d %%' % (100 * correct / total))

全部代码(需要cuda而修改或者添加的地方用###在代码后标出)

 1 import torch as t
 2 from torchvision import transforms
 3 from torchvision import datasets
 4 from torch.utils.data import DataLoader
 5 import torch.optim as op
 6 import torch.nn.functional as f
 7 
 8 use_gpu = t.cuda.is_available()  ###
 9 device = t.device('cuda:0')  ###
10 
11 batch_size = 64
12 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
13 # notice : Compose([]) there is []!!!!!!!!!!!!!!!!!!!!!!!!
14 # mnist mean : 0.1307, std :0.3081
15 # convert the PIL to Tensor and then normalized so that the gray level is [0,1]
16 
17 train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
18 train_loader = DataLoader(train_dataset, batch_size=batch_size)
19 test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
20 test_loader = DataLoader(test_dataset, batch_size=batch_size)
21 
22 test_dataset = test_dataset
23 train_loader = train_loader
24 test_dataset = test_dataset
25 test_loader = test_loader
26 
27 
28 class Net(t.nn.Module):
29     def __init__(self):
30         super(Net, self).__init__()
31         self.linear1 = t.nn.Linear(784, 512)
32         self.linear2 = t.nn.Linear(512, 256)
33         self.linear3 = t.nn.Linear(256, 128)
34         self.linear4 = t.nn.Linear(128, 64)
35         self.linear5 = t.nn.Linear(64, 10)
36 
37     def forward(self, x):
38         x = x.view(-1, 784)  # 1*28*28 Tensor to 1*784 vectors, -1 can auto_transform to pic nums
39         x = f.relu(self.linear1(x))
40         x = f.relu(self.linear2(x))
41         x = f.relu(self.linear3(x))
42         x = f.relu(self.linear4(x))
43         return self.linear5(x)
44 
45 
46 model = Net()  # there is ()!
47 criterion = t.nn.CrossEntropyLoss()
48 optimizer = op.SGD(model.parameters(), lr=0.01, momentum=0.5)
49 
50 # cuda
51 model = model.to(device)  ###
52 criterion = criterion.to(device)  ###
53 
54 
55 def train(epoch):
56     running_loss = 0.0
57     for batch_idx, data in enumerate(train_loader, 0):
58         inputs, target = data
59         # cuda inputs and target
60         inputs = inputs.to(device)  ###
61         target = target.to(device)  ###
62         optimizer.zero_grad()  # noticed:  the grad return to zero before starting the loop
63 
64         # forward + backward +update
65         outputs = model(inputs)
66         outputs = outputs.to(device)  ###
67         loss = criterion(outputs, target)
68         loss.backward()
69         optimizer.step()
70 
71         running_loss += loss.item()
72         if batch_idx % 300 == 299:
73             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
74             running_loss = 0.0
75 
76 
77 def test():
78     correct = 0
79     total = 0
80     with t.no_grad():  # ensuring grad can not updating
81         for data in test_loader:
82             images, label = data
83             # cuda images, label
84             images = images.to(device)  ###
85             label = label.to(device)  ###
86             outputs = model(images)
87             outputs = outputs.to(device)  ###
88             _, predicted = t.max(outputs.data, dim=1)  # taking the max num from one_hot code
89             total += label.size(0)
90             # label's format in array that N*1 like [1,8,5,8,3,2,1,4,.....,5]. so label.size() return a array [N,1] and label.size(0) is N
91             correct += (predicted == label).sum().item()
92     print('Accurary on test set: %d %%' % (100 * correct / total))
93 
94 
95 if __name__ == '__main__':
96     for epoch in range(10):
97         train(epoch)
98         test()
View Code

 

这篇关于pytorch中如何将CPU上运行的数据模型转到GPU上运行(mnist举例)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!