我们枚举一个参考平均数(注意不是真正的平均数),把每条边按边权与参考平均数的差的绝对值从小到大排序,跑一遍Kruskal,即可求出对应的标准差:
double now_average;//参考平均数 struct EDGE { int u , v , c; }ed[M]; bool cmp(EDGE a , EDGE b) { return fabs((double)a.c - now_average) < fabs((double)b.c - now_average); } bool choosed[M]; double GetDeviation() { UF::init(); std::sort(ed + 1 , ed + m + 1 , cmp); std::memset(choosed , 0 , sizeof(choosed)); double average; for(int i = 1 ; i <= m ; i++) { int u = ed[i].u , v = ed[i].v; if(UF::findroot(u) == UF::findroot(v)) continue; UF::uni(ed[i].u , ed[i].v); choosed[i] = true; average += ed[i].c; } double deviation = 0; average /= (double)(n - 1);//真正的平均数 for(int i = 1 ; i <= m ; i++) if(choosed[i]) deviation += fabs(average - (double)ed[i].c) * fabs(average - (double)ed[i].c); return sqrt(deviation / (double)(n - 1)); }
不难想到, 若\(x=\text{参考平均数}\),\(f(x)=参考平均数对应的标准差\),\(f(x)\)应该是一条比较丝滑的曲线,因此,我用了模拟退火.其实直接一个一个枚举也行,不过模拟退火跑得巨快300ms内就可以出结果.
这不是GMOJ的AC代码
同样的数据,本地A,洛谷云IDE A , GMOJ WA(雾)
#include <iostream> #include <cstdio> #include <cmath> #include <cstdlib> #include <algorithm> #include <cstring> unsigned seed; int read() { int re = 0; char c = getchar(); bool negt = false; while(c < '0' || c > '9') negt |= (c == '-') , c = getchar(); while(c >= '0' && c <= '9') re = (re << 1) + (re << 3) + c - '0' , c = getchar(); seed *= re; return negt ? -re : re; } const int N = 110 , M = 2010; struct EDGE { int u , v , c; }ed[M]; const double delta_t = 0.993; const double originT = 100;//初始温度没必要太大,因为c的范围小 int n , m; double ans_average , ans_deviation = 1e10; namespace UF { int fa[N]; void init() { for(int i = 1 ; i <= n ; i++) fa[i] = i; } int findroot(int x) { return fa[x] == x ? x : (fa[x] = findroot(fa[x])); } inline void uni(int u , int v) { if(findroot(u) != findroot(v)) fa[findroot(u)] = fa[v]; } } double now_average = 50; bool cmp(EDGE a , EDGE b) { return fabs((double)a.c - now_average) < fabs((double)b.c - now_average); } bool choosed[M]; int minc , maxc; double GetDeviation() { UF::init(); std::sort(ed + 1 , ed + m + 1 , cmp); std::memset(choosed , 0 , sizeof(choosed)); double average; for(int i = 1 ; i <= m ; i++) { int u = ed[i].u , v = ed[i].v; if(UF::findroot(u) == UF::findroot(v)) continue; UF::uni(ed[i].u , ed[i].v); choosed[i] = true; average += ed[i].c; } double deviation = 0; average /= (double)(n - 1); for(int i = 1 ; i <= m ; i++) if(choosed[i]) deviation += fabs(average - (double)ed[i].c) * fabs(average - (double)ed[i].c); return sqrt(deviation / (double)(n - 1)); } void simulate_anneal() { double average = ans_average; double t = originT; while(t > 1e-5) {//这个也没必要太小,否则答案没影响 now_average = average + (rand() * 2 - RAND_MAX) * t; if(now_average < 0 || now_average > 100) {//优化下,温度的范围变小后,模拟退火可以跑得巨快. t *= delta_t; continue; } double now_deviation = GetDeviation(); double DE = now_deviation - ans_deviation; if(DE < 0) { ans_average = average = now_average; ans_deviation = now_deviation; } else if(exp(-DE / t) * RAND_MAX > rand()) { average = now_average; } t *= delta_t; } } int main() { n = read() , m = read(); for(int i = 1 ; i <= m ; i++) { ed[i].u = read() , ed[i].v = read() , ed[i].c = read(); } std::srand(seed); for(int i = 1 ; i <= (m <= 20 ? 10 : 3) ; i++) simulate_anneal(); std::printf("%.4f" , ans_deviation); return 0; }