In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
译:在计算机科学中,堆是一种特殊的基于树的数据结构,它满足堆属性:如果 P 是 C 的父节点,则 P 的键(值)要么大于或等于(在最大堆中) ) 或小于或等于(在最小堆中)C 的键。堆的常见实现是二叉堆,其中树是完全二叉树。 (引自维基百科 https://en.wikipedia.org/wiki/Heap_(data_structure))
你的工作是判断一个给定的完整二叉树是否是一个堆。
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
译:每个输入文件包含一个测试用例。 对于每种情况,第一行给出两个正整数:M(≤ 100),要测试的树的数量; 和 N (1 < N ≤ 1,000),分别是每棵树中的键数。 然后是 M 行,每行包含 N 个不同的整数键(都在 int 范围内),这给出了完整二叉树的层序遍历序列。
For each given tree, print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
译:对于每个给定的树,如果它是最大堆,则在一行中打印 Max Heap
,如果是最小堆,则打印为Min Heap
,如果根本不是堆,则打印为 Not Heap
。 然后在下一行打印树的后序遍历序列。 所有数字之间用空格隔开,行首或行尾不得有多余空格。
3 8 98 72 86 60 65 12 23 50 8 38 25 58 52 82 70 60 10 28 15 12 34 9 8 56
Max Heap 50 60 65 72 12 23 86 98 Min Heap 60 58 52 38 82 70 25 8 Not Heap 56 12 34 28 9 8 15 10
直接建树的话,最后两个测试点会超时。
利用堆的性质,可以不见树即可判断是否是堆,然后由于需后序遍历,最后一个结点一定是根节点,所以可以直接对数组使用 dfs 。
#include<bits/stdc++.h> using namespace std ; int layer[1010] , m , n ; void dfs(int root){ if(root > n ) return ; dfs(root * 2) ; dfs(root * 2 + 1) ; cout << layer[root] << ((root == 1)?'\n':' ') ; } int main(){ cin >> m >> n ; for(int i = 0 ; i < m ; i ++){ for(int j = 1 ; j <= n ; j ++) cin >> layer[j] ; bool minHeap = true , maxHeap = true ; for(int j = 1 ; j <= n ; j ++){ if(j > 1 && layer[j/2] > layer[j]) minHeap = false ; if(j > 1 && layer[j/2] < layer[j]) maxHeap = false ; } if(maxHeap) cout << "Max Heap" << endl ; else if(minHeap) cout << "Min Heap" << endl ; else cout << "Not Heap" << endl ; dfs(1) ; } return 0 ; }