本文主要是介绍基于numpy用梯度上升法处理逻辑斯蒂回归,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import numpy as np
import matplotlib.pyplot as plt
w=700
w1=700
n=w1-50
train=np.random.randint(-300,300,(w,4))
train=train.astype(float)
train_lable=np.zeros((w,1))
traint=train.astype(float)
lam=100
for i in range(4):
train[:,i]=(train[:,i]-train[:,i].mean())/train[:,i].std()
for i in range(w):
if 1*train[i,0]+2*train[i,1]+3*train[i,2]+4*train[i,3]-1>0:
train_lable[i]=1
else:
train_lable[i]=0
w=np.zeros(4)
b=0
beta=1
for i in range(300):
sum=np.zeros(5)
for i1 in range(4):
for i2 in range(w1-50):
sum[i1]=sum[i1]+train_lable[i2]*train[i2,i1]-train[i2,i1]*np.exp(np.dot(w,train[i2])+b)/(1+np.exp(np.dot(w,train[i2])+b))-lam/n*w[i1]
for i2 in range(w1-50):
sum[4]=sum[4]+train_lable[i2]-np.exp(np.dot(w,train[i2])+b)/(1+np.exp(np.dot(w,train[i2])+b))
loss=0
for i2 in range(w1-50):
loss=loss+train_lable[i2]*(np.dot(w,train[i2])+b)-np.log(1+np.exp(np.dot(w,train[i2])+b))
sum=sum/(w1-50)
loss=loss/(w1-50)-lam/2/n*np.dot(w,w)
if loss>=-0.9 and beta>=1:
beta=beta/10
print(i,beta,loss,sum,w,b)
for i1 in range(5):
if i1==4:
b=beta*sum[4]+b
else:
w[i1]=w[i1]+beta*sum[i1]
acc=0
k=w1-50
for i in range(50):
if(np.dot(w,train[i+k])+b>0):
if train_lable[i+k]==1:
acc+=1
else:
if train_lable[i+k]==0:
acc+=1
print(acc)
这篇关于基于numpy用梯度上升法处理逻辑斯蒂回归的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!