简单研究下线程池的执行原理。以及execute 和 submit 方法的区别。
1. execute 方法接收的是一个Runnable 参数,返回值是void 类型,也就是不接收结果, 方法签名如下:
java.util.concurrent.Executor#execute
void execute(Runnable command);
2. submit 方法三个重载的方法,如下:
对应的方法如下:‘
(1) java.util.concurrent.ExecutorService#submit(java.lang.Runnable)
Future<?> submit(Runnable task);
(2) java.util.concurrent.ExecutorService#submit(java.lang.Runnable, T)
<T> Future<T> submit(Runnable task, T result);
(3) java.util.concurrent.ExecutorService#submit(java.util.concurrent.Callable<T>)
<T> Future<T> submit(Callable<T> task);
测试代码
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(5, 5, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(3)); // execute 方法无返回值,相当于执行不带返回结果的任务 threadPoolExecutor.execute(() -> { log.info("--" + Thread.currentThread().getName() + "--A"); try { Thread.sleep(2 * 1000); } catch (InterruptedException e) { } log.info("--" + Thread.currentThread().getName() + "--B"); });
查看源代码如下:
(1) 接口是Executor 的方法
void execute(Runnable command);
(2) 实现类java.util.concurrent.ThreadPoolExecutor#execute
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. */ int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }
源码跟踪:
(1) addWorker(command, true) 增加worker
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
worker 是一个内部类java.util.concurrent.ThreadPoolExecutor.Worker,其包含的重要属性和方法如下:
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** * This class will never be serialized, but we provide a * serialVersionUID to suppress a javac warning. */ private static final long serialVersionUID = 6138294804551838833L; /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } public void run() { runWorker(this); } final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } } ...
1》new Worker 的时候会创建线程,线程传入的Runnable 对象是Worker 自身,同时Worker
2》t.start(); 启动的时候会调用java.util.concurrent.ThreadPoolExecutor.Worker#run 方法
3》然后调用到java.util.concurrent.ThreadPoolExecutor#runWorker, 方法内部调用task.run(); 相当于同步的调用 传给线程池的Runnable 任务的run 方法。
4》当不是第一个任务的时候走的是java.util.concurrent.ThreadPoolExecutor#getTask, 也就是从任务队列中阻塞拿去任务
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }
查看源码如下:java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable)
public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask; }
可以理解大体的思路是对,传给线程池的Runnable 进行了下包装,java.util.concurrent.AbstractExecutorService#newTaskFor(java.lang.Runnable, T) 如下:
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { return new FutureTask<T>(runnable, value); }
(1) java.util.concurrent.RunnableFuture 继承了接口Runnable, Future<V>
public interface RunnableFuture<V> extends Runnable, Future<V> { void run(); }
java.util.concurrent.Future 接口如下:
public interface Future<V> { /** * Attempts to cancel execution of this task. This attempt will * fail if the task has already completed, has already been cancelled, * or could not be cancelled for some other reason. If successful, * and this task has not started when {@code cancel} is called, * this task should never run. If the task has already started, * then the {@code mayInterruptIfRunning} parameter determines * whether the thread executing this task should be interrupted in * an attempt to stop the task. * * <p>After this method returns, subsequent calls to {@link #isDone} will * always return {@code true}. Subsequent calls to {@link #isCancelled} * will always return {@code true} if this method returned {@code true}. * * @param mayInterruptIfRunning {@code true} if the thread executing this * task should be interrupted; otherwise, in-progress tasks are allowed * to complete * @return {@code false} if the task could not be cancelled, * typically because it has already completed normally; * {@code true} otherwise */ boolean cancel(boolean mayInterruptIfRunning); /** * Returns {@code true} if this task was cancelled before it completed * normally. * * @return {@code true} if this task was cancelled before it completed */ boolean isCancelled(); /** * Returns {@code true} if this task completed. * * Completion may be due to normal termination, an exception, or * cancellation -- in all of these cases, this method will return * {@code true}. * * @return {@code true} if this task completed */ boolean isDone(); /** * Waits if necessary for the computation to complete, and then * retrieves its result. * * @return the computed result * @throws CancellationException if the computation was cancelled * @throws ExecutionException if the computation threw an * exception * @throws InterruptedException if the current thread was interrupted * while waiting */ V get() throws InterruptedException, ExecutionException; /** * Waits if necessary for at most the given time for the computation * to complete, and then retrieves its result, if available. * * @param timeout the maximum time to wait * @param unit the time unit of the timeout argument * @return the computed result * @throws CancellationException if the computation was cancelled * @throws ExecutionException if the computation threw an * exception * @throws InterruptedException if the current thread was interrupted * while waiting * @throws TimeoutException if the wait timed out */ V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; }
java.util.concurrent.FutureTask 的重要属性和方法如下:
public class FutureTask<V> implements RunnableFuture<V> { private volatile int state; private static final int NEW = 0; private static final int COMPLETING = 1; private static final int NORMAL = 2; private static final int EXCEPTIONAL = 3; private static final int CANCELLED = 4; private static final int INTERRUPTING = 5; private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */ private Callable<V> callable; /** The result to return or exception to throw from get() */ private Object outcome; // non-volatile, protected by state reads/writes /** The thread running the callable; CASed during run() */ private volatile Thread runner; /** Treiber stack of waiting threads */ private volatile WaitNode waiters; public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable } public FutureTask(Runnable runnable, V result) { this.callable = Executors.callable(runnable, result); this.state = NEW; // ensure visibility of callable } public boolean isCancelled() { return state >= CANCELLED; } public boolean isDone() { return state != NEW; } public boolean cancel(boolean mayInterruptIfRunning) { if (!(state == NEW && UNSAFE.compareAndSwapInt(this, stateOffset, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED))) return false; try { // in case call to interrupt throws exception if (mayInterruptIfRunning) { try { Thread t = runner; if (t != null) t.interrupt(); } finally { // final state UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); } } } finally { finishCompletion(); } return true; } public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); } public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null) throw new NullPointerException(); int s = state; if (s <= COMPLETING && (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); } protected void done() { } protected void set(V v) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state finishCompletion(); } } ...
1》java.util.concurrent.Executors#callable(java.lang.Runnable, T) 采用适配器模式,将Runnable 适配为Callable
public static <T> Callable<T> callable(Runnable task, T result) { if (task == null) throw new NullPointerException(); return new RunnableAdapter<T>(task, result); }
java.util.concurrent.Executors.RunnableAdapter 如下:
static final class RunnableAdapter<T> implements Callable<T> { final Runnable task; final T result; RunnableAdapter(Runnable task, T result) { this.task = task; this.result = result; } public T call() { task.run(); return result; } }
可以看到是返回固定的结果, 也就是接受Runnable 的时候,返回的结果是固定的结果
2》然后同上面execute 方法一样,执行execute(ftask); 方法,这时候线程池跑的是FutureTask 对象
3》return ftask; 返回Future 对象,使得可以外部拿该对象可以获取执行结果。
4》线程跑任务会调用java.util.concurrent.FutureTask#run, 方法如下:
public void run() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
public <T> Future<T> submit(Runnable task, T result) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task, result); execute(ftask); return ftask; }
根据上面的理解,是返回固定的结果result, 只不过java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable) 的返回结果是null。
(1) 测试代码
Future<String> submit1 = threadPoolExecutor.submit(new Callable<String>() { @Override public String call() throws Exception { log.info("--" + Thread.currentThread().getName() + "--E"); try { Thread.sleep(2 * 1000); } catch (InterruptedException e) { } log.info("--" + Thread.currentThread().getName() + "--F"); return "123456"; } });
(2) 源码:java.util.concurrent.AbstractExecutorService#submit(java.util.concurrent.Callable<T>)
public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; }
1》java.util.concurrent.AbstractExecutorService#newTaskFor(java.util.concurrent.Callable<T>) 创建 FutureTask
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); }
接着调用:java.util.concurrent.FutureTask#FutureTask(java.util.concurrent.Callable<V>)
public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable }
2》然后调用java.util.concurrent.ThreadPoolExecutor#execute 跑任务,只不过Runnable 对象是java.util.concurrent.FutureTask, 内部的run 方法是调用成员属性Callable 的call 方法,方法执行完之后记录其返回结果, 所以FutureTask 可以拿到返回的结果。
补充:Future 两个重要的方法
(1) java.util.concurrent.FutureTask#isDone 判断是否执行完成
public boolean isDone() { return state != NEW; }
(2) 获取结果:
public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); }
java.util.concurrent.FutureTask#awaitDone 阻塞获取结果:
private int awaitDone(boolean timed, long nanos) throws InterruptedException { final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; for (;;) { if (Thread.interrupted()) { removeWaiter(q); throw new InterruptedException(); } int s = state; if (s > COMPLETING) { if (q != null) q.thread = null; return s; } else if (s == COMPLETING) // cannot time out yet Thread.yield(); else if (q == null) q = new WaitNode(); else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } else LockSupport.park(this); } }
可以看到这里使用了 java.util.concurrent.locks.LockSupport#park(java.lang.Object) 进行阻塞线程,下面使用的是UNSAFE 类的相关API。
补充:关于LockSupport 的使用
参考:https://www.jianshu.com/p/8e6b1942ae39
测试代码:
package org.example; import java.util.concurrent.locks.LockSupport; public class PlainTest2 { public static void main(String[] args) { Thread t = new Thread(new Runnable() { @Override public void run() { System.out.println("111222"); LockSupport.park(); System.out.println("333444"); //LockSupport.park(obj); } }); t.start(); try { Thread.sleep(10000); } catch (InterruptedException e) { } System.out.println("555555"); LockSupport.unpark(t); System.out.println("555555"); } }
查看LockSupport 源码:
public static void park() { UNSAFE.park(false, 0L); } public static void unpark(Thread thread) { if (thread != null) UNSAFE.unpark(thread); }
strace linux环境下面监测如下:
1》park
clock_gettime(CLOCK_MONOTONIC, {tv_sec=273, tv_nsec=622979062}) = 0 futex(0xf6797ab8, FUTEX_WAIT_PRIVATE, 1, NULL) = 0 futex(0xf6797a9c, FUTEX_WAIT_PRIVATE, 2, NULL) = 0 futex(0xf6797a9c, FUTEX_WAKE_PRIVATE, 1) = 0 clock_gettime(CLOCK_MONOTONIC, {tv_sec=373, tv_nsec=621209093}) = 0 clock_gettime(CLOCK_MONOTONIC, {tv_sec=373, tv_nsec=621237803}) = 0 futex(0xf6797344, FUTEX_WAIT_PRIVATE, 1, {tv_sec=0, tv_nsec=971290}) = 0 futex(0xf6797328, FUTEX_WAIT_PRIVATE, 2, NULL) = 0 futex(0xf6797328, FUTEX_WAKE_PRIVATE, 1) = 0
2》unpark
write(1, "555555", 6) = 6 write(1, "\n", 1) = 1 clock_gettime(CLOCK_MONOTONIC, {tv_sec=373, tv_nsec=620209800}) = 0 futex(0xf6797ab8, FUTEX_WAKE_OP_PRIVATE, 1, 1, 0xf6797ab4, FUTEX_OP_SET<<28|0<<12|FUTEX_OP_CMP_GT<<24|0x1) = 1 futex(0xf6797a9c, FUTEX_WAKE_PRIVATE, 1) = 1 write(1, "555555", 6) = 6
可以看到到内核调用的也是futex 指令,和synchronized 一样。