二叉树的最近公共祖先题目链接
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。
示例 2:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。
示例 3:
输入:root = [1,2], p = 1, q = 2
输出:1
提示:
树中节点数目在范围 [2, 105] 内。
-109 <= Node.val <= 109
所有 Node.val 互不相同 。
p != q
p 和 q 均存在于给定的二叉树中。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
首先我们知道深度是越下边越大,所以我们要找的是所有公共祖先的最下边的那个,所以我们将其拆解为单一的一个子问题,然后进行递归就可以了。
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { //当p,或者q,或者root直接为空时 if(root==null||p==null||q==null) return null; if(root==p||root==q){ return root; } TreeNode leftZuXian=lowestCommonAncestor(root.left,p,q); TreeNode rightZuXian=lowestCommonAncestor(root.right,p,q); if(leftZuXian!=null&&rightZuXian!=null){ return root; } if(leftZuXian==null&&rightZuXian!=null){ return rightZuXian; } if(leftZuXian!=null&&rightZuXian==null){ return leftZuXian; } return null; } }