本文主要是介绍【数据结构与算法】平衡二叉查找树的功能实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct TreeNode
{
int data;
struct TreeNode* left;
struct TreeNode* right;
int hight;
}TreeNode;
TreeNode* create_node(int data)
{
TreeNode* node = malloc(sizeof(TreeNode));
node->data = data;
node->left = NULL;
node->right = NULL;
node->hight = 1;
return node;
}
int hight_tree(TreeNode* root)
{
if(NULL == root)
return 0;
return root->hight;
}
void count_hight(TreeNode* root)
{
if(NULL == root)
return;
int lh = hight_tree(root->left);
int rh = hight_tree(root->right);
root->hight = lh>rh ? lh+1 : rh+1;
}
void _add_tree(TreeNode** root,TreeNode* node)
{
if(NULL == *root)
{
*root = node;
return;
}
if(node->data < (*root)->data)
_add_tree(&(*root)->left,node);
else
_add_tree(&(*root)->right,node);
count_hight(*root);
}
void add_tree(TreeNode** root,int data)
{
_add_tree(root,create_node(data));
}
void _ldr_show(TreeNode* root)
{
if(NULL == root)
return;
_ldr_show(root->left);
printf("%d ",root->data);
_ldr_show(root->right);
}
void ldr_show(TreeNode* root)
{
_ldr_show(root);
printf("\n");
}
void right_rotate(TreeNode** root)
{
TreeNode* A = *root;
TreeNode* B = A->left;
TreeNode* t2 = B->right;
*root = B;
B->right = A;
A->left = t2;
count_hight(A);
count_hight(B);
}
void left_rotate(TreeNode** root)
{
TreeNode* A = *root;
TreeNode* B = A->right;
TreeNode* t2 = B->left;
*root = B;
B->left = A;
A->right = t2;
count_hight(A);
count_hight(B);
}
void avl_tree(TreeNode** root)
{
if(NULL==*root || (NULL==(*root)->left && NULL==(*root)->right))
return;
avl_tree(&(*root)->left);
avl_tree(&(*root)->right);
int avl = hight_tree((*root)->left)-hight_tree((*root)->right);
if(avl > 1)
{
if(0 < hight_tree((*root)->left->left) - hight_tree((*root)->left->right))
{
/*
A 以B为轴向右旋转
/ \
B t1 B
/ \ / \
C t2 C A
/ \ / \ / \
t4 t3 t4 t3 t2 t1
*/
right_rotate(root);
}
else
{
/*
A A
/ \ 以C为轴向左旋转 / \
B t1 C t1
/ \ / \
t2 C B t4
/ \ / \
t3 t4 t2 t3
*/
left_rotate(&(*root)->left);
right_rotate(root);
}
avl_tree(root);
}
else if(avl < -1)
{
if(0 > hight_tree((*root)->right->left) - hight_tree((*root)->right->right))
{
/*
A 以B为轴向左旋转
/ \
t1 B B
/ \ / \
t2 C A C
/ \ / \ / \
t3 t4 t1 t2 t3 t4
*/
left_rotate(root);
}
else
{
/*
A A
/ \ 以C为轴向右旋转 / \
t1 B t1 C
/ \ / \
C t2 t3 B
/ \ / \
t3 t4 t4 t2
*/
right_rotate(&(*root)->right);
left_rotate(root);
}
avl_tree(root);
}
}
bool blance_tree(TreeNode* root)
{
if(NULL == root)
return true;
int lh = hight_tree(root->left);
int rh = hight_tree(root->right);
return abs(lh-rh)<2 && blance_tree(root->left) && blance_tree(root->right);
}
int main(int argc,const char* argv[])
{
TreeNode* root = NULL;
for(int i=10; i>0; i--)
{
add_tree(&root,i);
}
ldr_show(root);
printf("is blance %d\n",blance_tree(root));
avl_tree(&root);
printf("-----------------\n");
printf("is blance %d\n",blance_tree(root));
ldr_show(root);
}
这篇关于【数据结构与算法】平衡二叉查找树的功能实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!