本题来源于哈尔滨工业大学第九届全国大学生数学竞赛初赛模拟试题一。
设
\[\rho(\xi)=\frac{1}{\pi} \cdot \frac{y}{(\xi-x)^{2}+y^{2}} \]\[f(y)=\int_{-\infty}^{+\infty}|\xi-x|^{\frac{1}{2}} \rho(\xi) \mathrm{d} \xi \]其中 \(\xi,x\) 为任意实数, \(y\) 为正实数. 求 \(f (x)\) 的表达式.
Solution: 本题是含绝对值的广义定积分,首先应该分区间去掉绝对值
\[\begin{align*} f\left( y \right) =&\frac{1}{\pi}\int_{-\infty}^x{\left( x-\xi \right)}^{\frac{1}{2}}\frac{y}{\left( \xi -x \right) ^2+y^2}\text{d}\xi +\frac{1}{\pi} \int_{x}^{+\infty }(\xi-x)^{\frac12}\frac{y}{\left( \xi -x \right) ^2+y^2}\text{d}\xi\\ \xlongequal[]{t=\xi-x}&\frac{1}{\pi}\int _{-\infty }^0(-t)^{\frac12}\frac{y}{t^2+y^2}{\rm d}t +\frac1\pi \int _{0}^{+\infty}t^{\frac12}\frac{y}{t^2+y^2}{\rm d}t\\ =&\frac{2}{\pi} \int _{0}^{+\infty}t^{\frac12}\frac{y}{t^2+y^2}{\rm d}t \xlongequal[]{t=k^2}\frac{4y}{\pi}\int _{0}^{+\infty}\frac{k^2}{k^4+y^2}{\rm d}k \end{align*} \]继续换元有
\[\begin{align*} \int_{0}^{+\infty} \frac{k^{2}}{k^{4}+y^{2}} \mathrm{~d} k \xlongequal[]{k^{2}=y \tan \theta}&\int_{0}^{\frac{\pi}{2}} \frac{y \tan \theta}{y^{2} \sec ^{2} \theta} \cdot \frac{\sqrt{y} \sec ^{2} \theta}{2 \sqrt{\tan \theta}} \mathrm{d} \theta \\ =&\frac{1}{2 \sqrt{y}} \int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}} \theta \cdot \cos ^{\frac{1}{2}} \theta \mathrm{d} \theta \end{align*} \]利用Beta函数及余元公式易得
\[\begin{aligned} f(y) &=\frac{4 y}{\pi} \int_{0}^{+\infty} \frac{k^{2}}{k^{4}+y^{2}} \mathrm{~d} k \\ &=\frac{4 y}{\pi \cdot 2 \sqrt{y}} \int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}} \theta \cdot \cos ^{\frac{1}{2}} \theta \mathrm{d} \theta \\ &=\frac{\sqrt{y}}{\pi} B\left(\frac{3}{4}, \frac{1}{4}\right)=\sqrt{2 y} \end{aligned} \]从而得到
\[f(x)=\sqrt{2x} \]\(\square\)