Reflection(反射)是被视为动态语言的关键,反射机制允许程序在执行期借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。
加载完类之后, 在堆内存的方法区中就产生了一个Class类型的对象( 一个类只有一个Class对象) , 这个对象就包含了完整的类的结构信息。 我们可以通过这个对象看到类的结构。 这个对象就像一面镜子, 透过这个镜子看到类的结构, 所以, 我们形象的称之为: 反射。
Java反射机制提供的功能
反射相关的主要API
下面展示一些 反射类的举例说明
。
public class Person { private String name; public int age; @Override public String toString() { return "Person{" + "name='" + name + '\'' + ", age=" + age + '}'; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } public Person(String name, int age) { this.name = name; this.age = age; } private Person(String name) { this.name = name; } public Person() { System.out.println("Person()"); } public void show(){ System.out.println("你好,我是一个人"); } private String showNation(String nation){ System.out.println("我的国籍是:" + nation); return nation; } }
下面展示一些 反射的功能说明
。
//反射之前,对于Person的操作 @Test public void test1() { //1.创建Person类的对象 Person p1 = new Person("Tom", 12); //2.通过对象,调用其内部的属性、方法 p1.age = 10; System.out.println(p1.toString()); p1.show(); //在Person类外部,不可以通过Person类的对象调用其内部私有结构。 //比如:name、showNation()以及私有的构造器 } //反射之后,对于Person的操作 @Test public void test2() throws Exception{ Class clazz = Person.class; //1.通过反射,创建Person类的对象 Constructor cons = clazz.getConstructor(String.class,int.class); Object obj = cons.newInstance("Tom", 12); Person p = (Person) obj; System.out.println(p.toString()); //2.通过反射,调用对象指定的属性、方法 //调用属性 Field age = clazz.getDeclaredField("age"); age.set(p,10); System.out.println(p.toString()); //调用方法 Method show = clazz.getDeclaredMethod("show"); show.invoke(p); System.out.println("*******************************"); //通过反射,可以调用Person类的私有结构的。比如:私有的构造器、方法、属性 //调用私有的构造器 Constructor cons1 = clazz.getDeclaredConstructor(String.class); cons1.setAccessible(true); Person p1 = (Person) cons1.newInstance("Jerry"); System.out.println(p1); //调用私有的属性 Field name = clazz.getDeclaredField("name"); name.setAccessible(true); name.set(p1,"HanMeimei"); System.out.println(p1); //调用私有的方法 Method showNation = clazz.getDeclaredMethod("showNation", String.class); showNation.setAccessible(true); String nation = (String) showNation.invoke(p1,"中国");//相当于String nation = p1.showNation("中国") System.out.println(nation); }
Class 类
在Object类中定义了以下的方法,此方法将被所有子类继承:
● public final Class getClass()
以上的方法返回值的类型是一个Class类,此类是Java反射的源头,实际上所谓反射从程序的运行结果来看也很好理解,即:可以通过对象反射求出类的名称。
对象照镜子后可以得到的信息:某个类的属性、方法和构造器、某个类到底实现了哪些接口。对于每个类而言, JRE 都为其保留一个不变的 Class 类型的对象。一个 Class 对象包含了特定某个结构(class/interface/enum/annotation/primitive type/void/[])的有关信息。
Class类的常用方法
获取Class类的实例(四种方法)–(重点)
1) 前提: 若已知具体的类,通过类的class属性获取, 该方法最为安全可靠,程序性能最高
实例: Class clazz = String.class;
2) 前提: 已知某个类的实例,调用该实例的getClass()方法获取Class对象
实例: Class clazz = “www.atguigu.com”.getClass();
3) 前提: 已知一个类的全类名,且该类在类路径下, 可通过Class类的静态方法forName()获取,可能抛出ClassNotFoundException
实例: Class clazz = Class.forName(“java.lang.String”);
4)其他方式(不做要求)
ClassLoader cl = this.getClass().getClassLoader();
Class clazz4 = cl.loadClass(“类的全类名”);
下面展示一些 获取Class的实例的方式(前三种方式需要掌握)
。
/* 关于java.lang.Class类的理解 1.类的加载过程: 程序经过javac.exe命令以后,会生成一个或多个字节码文件(.class结尾)。 接着我们使用java.exe命令对某个字节码文件进行解释运行。相当于将某个字节码文件 加载到内存中。此过程就称为类的加载。加载到内存中的类,我们就称为运行时类,此 运行时类,就作为Class的一个实例。 2.换句话说,Class的实例就对应着一个运行时类。 3.加载到内存中的运行时类,会缓存一定的时间。在此时间之内,我们可以通过不同的方式 来获取此运行时类。 */ //获取Class的实例的方式(前三种方式需要掌握) @Test public void test3() throws ClassNotFoundException { //方式一:调用运行时类的属性:.class Class clazz1 = Person.class; System.out.println(clazz1); //方式二:通过运行时类的对象,调用getClass() Person p1 = new Person(); Class clazz2 = p1.getClass(); System.out.println(clazz2); //方式三:调用Class的静态方法:forName(String classPath) Class clazz3 = Class.forName("com.atguigu.java.Person"); // clazz3 = Class.forName("java.lang.String"); System.out.println(clazz3); System.out.println(clazz1 == clazz2); System.out.println(clazz1 == clazz3); //方式四:使用类的加载器:ClassLoader (了解) ClassLoader classLoader = ReflectionTest.class.getClassLoader(); Class clazz4 = classLoader.loadClass("com.atguigu.java.Person"); System.out.println(clazz4); System.out.println(clazz1 == clazz4); } //万事万物皆对象?对象.xxx,File,URL,反射,前端、数据库操作 //Class实例可以是哪些结构的说明: @Test public void test4(){ Class c1 = Object.class; Class c2 = Comparable.class; Class c3 = String[].class; Class c4 = int[][].class; Class c5 = ElementType.class; Class c6 = Override.class; Class c7 = int.class; Class c8 = void.class; Class c9 = Class.class; int[] a = new int[10]; int[] b = new int[100]; Class c10 = a.getClass(); Class c11 = b.getClass(); // 只要数组的元素类型与维度一样,就是同一个Class System.out.println(c10 == c11); }
类的加载过程(了解)
当程序主动使用某个类时,如果该类还未被加载到内存中,则系统会通过如下三个步骤来对该类进行初始化。
类的主动引用(一定会发生类的初始化)(了解)
类的被动引用(不会发生类的初始化)(了解)
类加载器的作用:
类的加载与ClassLoader的理解
//1.获取一个系统类加载器
• ClassLoader classloader = ClassLoader.getSystemClassLoader();
• System.out.println(classloader);
//2.获取系统类加载器的父类加载器,即扩展类加载器
• classloader = classloader.getParent();
• System.out.println(classloader);
//3.获取扩展类加载器的父类加载器,即引导类加载器
• classloader = classloader.getParent();
• System.out.println(classloader);
//4.测试当前类由哪个类加载器进行加载
• classloader = Class.forName(“exer2.ClassloaderDemo”).getClassLoader();
• System.out.println(classloader);
//5.测试JDK提供的Object类由哪个类加载器加载
• classloader =
• Class.forName(“java.lang.Object”).getClassLoader();
• System.out.println(classloader);
//*6.关于类加载器的一个主要方法: getResourceAsStream(String str):获取类路
径下的指定文件的输入流
• InputStream in = null;
• in = this.getClass().getClassLoader().getResourceAsStream(“exer2\test.properties”);
• System.out.println(in);
下面展示一些 了解类的加载器
。
@Test public void test1(){ //对于自定义类,使用系统类加载器进行加载 ClassLoader classLoader = ClassLoaderTest.class.getClassLoader(); System.out.println(classLoader); //调用系统类加载器的getParent():获取扩展类加载器 ClassLoader classLoader1 = classLoader.getParent(); System.out.println(classLoader1); //调用扩展类加载器的getParent():无法获取引导类加载器 //引导类加载器主要负责加载java的核心类库,无法加载自定义类的。 ClassLoader classLoader2 = classLoader1.getParent(); System.out.println(classLoader2); ClassLoader classLoader3 = String.class.getClassLoader(); System.out.println(classLoader3); }
下面展示一些 Properties:用来读取配置文件
。
/* Properties:用来读取配置文件。 */ @Test public void test2() throws Exception { Properties pros = new Properties(); //此时的文件默认在当前的module下。 //读取配置文件的方式一: // FileInputStream fis = new FileInputStream("jdbc.properties"); // FileInputStream fis = new FileInputStream("src\\jdbc1.properties"); // pros.load(fis); //读取配置文件的方式二:使用ClassLoader //配置文件默认识别为:当前module的src下 ClassLoader classLoader = ClassLoaderTest.class.getClassLoader(); InputStream is = classLoader.getResourceAsStream("jdbc1.properties"); pros.load(is); String user = pros.getProperty("user"); String password = pros.getProperty("password"); System.out.println("user = " + user + ",password = " + password); }
1.根据全类名获取对应的Class对象
String name = “atguigu.java.Person";
Class clazz = null;
clazz = Class.forName(name);
2.调用指定参数结构的构造器,生成Constructor的实例
Constructor con = clazz.getConstructor(String.class,Integer.class);
3.通过Constructor的实例创建对应类的对象,并初始化类属性
Person p2 = (Person) con.newInstance(“Peter”,20);
System.out.println(p2);
下面展示一些 newInstance():创建对应的运行时类的对象
。
@Test public void test1() throws IllegalAccessException, InstantiationException { Class<Person> clazz = Person.class; /* newInstance():调用此方法,创建对应的运行时类的对象。内部调用了运行时类的空参的构造器。 要想此方法正常的创建运行时类的对象,要求: 1.运行时类必须提供空参的构造器 2.空参的构造器的访问权限得够。通常,设置为public。 在javabean中要求提供一个public的空参构造器。原因: 1.便于通过反射,创建运行时类的对象 2.便于子类继承此运行时类时,默认调用super()时,保证父类有此构造器 */ Person obj = clazz.newInstance(); System.out.println(obj); }
下面展示一些 体会反射的动态性
。
//体会反射的动态性 @Test public void test2(){ for(int i = 0;i < 100;i++){ int num = new Random().nextInt(3);//0,1,2 String classPath = ""; switch(num){ case 0: classPath = "java.util.Date"; break; case 1: classPath = "java.lang.Object"; break; case 2: classPath = "com.atguigu.java.Person"; break; } try { Object obj = getInstance(classPath); System.out.println(obj); } catch (Exception e) { e.printStackTrace(); } } } /* 创建一个指定类的对象。 classPath:指定类的全类名 */ public Object getInstance(String classPath) throws Exception { Class clazz = Class.forName(classPath); return clazz.newInstance(); }
通过反射获取运行时类的完整结构
Field、 Method、 Constructor、 Superclass、 Interface、 Annotation
下面展示一些 获取运行时类的完整结构-父类
。
public class Creature<T> implements Serializable { private char gender; public double weight; private void breath(){ System.out.println("生物呼吸"); } public void eat(){ System.out.println("生物吃东西"); } }
下面展示一些 获取运行时类的完整结构-注解
。
@Target({TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE}) @Retention(RetentionPolicy.RUNTIME) public @interface MyAnnotation { String value() default "hello"; }
下面展示一些 获取运行时类的完整结构-接口
。
public interface MyInterface { void info(); }
下面展示一些 获取运行时类的完整结构-对应类
。
@MyAnnotation(value="hi") public class Person extends Creature<String> implements Comparable<String>,MyInterface{ private String name; int age; public int id; public Person(){} @MyAnnotation(value="abc") private Person(String name){ this.name = name; } Person(String name,int age){ this.name = name; this.age = age; } @MyAnnotation private String show(String nation){ System.out.println("我的国籍是:" + nation); return nation; } public String display(String interests,int age) throws NullPointerException,ClassCastException{ return interests + age; } @Override public void info() { System.out.println("我是一个人"); } @Override public int compareTo(String o) { return 0; } private static void showDesc(){ System.out.println("我是一个可爱的人"); } @Override public String toString() { return "Person{" + "name='" + name + '\'' + ", age=" + age + ", id=" + id + '}'; } }
使用反射可以取得:
1.实现的全部接口
下面展示一些 获取运行时类实现的接口--getInterfaces()
。
/* 获取运行时类实现的接口 */ @Test public void test5(){ Class clazz = Person.class; Class[] interfaces = clazz.getInterfaces(); for(Class c : interfaces){ System.out.println(c); } System.out.println(); //获取运行时类的父类实现的接口 Class[] interfaces1 = clazz.getSuperclass().getInterfaces(); for(Class c : interfaces1){ System.out.println(c); } }
2.所继承的父类
下面展示一些 获取运行时类的父类--getSuperclass()
。
/* 获取运行时类的父类 */ @Test public void test2(){ Class clazz = Person.class; Class superclass = clazz.getSuperclass(); System.out.println(superclass); }
3.全部的构造器
下面展示一些 获取构造器结构--getConstructors()
。
/* 获取构造器结构 */ @Test public void test1(){ Class clazz = Person.class; //getConstructors():获取当前运行时类中声明为public的构造器 Constructor[] constructors = clazz.getConstructors(); for(Constructor c : constructors){ System.out.println(c); } System.out.println(); //getDeclaredConstructors():获取当前运行时类中声明的所有的构造器 Constructor[] declaredConstructors = clazz.getDeclaredConstructors(); for(Constructor c : declaredConstructors){ System.out.println(c); } }
4.全部的方法
下面展示一些 获取方法结构--methods(获取方法)
。
public class MethodTest { @Test public void test1(){ Class clazz = Person.class; //getMethods():获取当前运行时类及其所有父类中声明为public权限的方法 Method[] methods = clazz.getMethods(); for(Method m : methods){ System.out.println(m); } System.out.println(); //getDeclaredMethods():获取当前运行时类中声明的所有方法。(不包含父类中声明的方法) Method[] declaredMethods = clazz.getDeclaredMethods(); for(Method m : declaredMethods){ System.out.println(m); } } /* @Xxxx 权限修饰符 返回值类型 方法名(参数类型1 形参名1,...) throws XxxException{} */ @Test public void test2(){ Class clazz = Person.class; Method[] declaredMethods = clazz.getDeclaredMethods(); for(Method m : declaredMethods){ //1.获取方法声明的注解 Annotation[] annos = m.getAnnotations(); for(Annotation a : annos){ System.out.println(a); } //2.权限修饰符 System.out.print(Modifier.toString(m.getModifiers()) + "\t"); //3.返回值类型 System.out.print(m.getReturnType().getName() + "\t"); //4.方法名 System.out.print(m.getName()); System.out.print("("); //5.形参列表 Class[] parameterTypes = m.getParameterTypes(); if(!(parameterTypes == null && parameterTypes.length == 0)){ for(int i = 0;i < parameterTypes.length;i++){ if(i == parameterTypes.length - 1){ System.out.print(parameterTypes[i].getName() + " args_" + i); break; } System.out.print(parameterTypes[i].getName() + " args_" + i + ","); } } System.out.print(")"); //6.抛出的异常 Class[] exceptionTypes = m.getExceptionTypes(); if(exceptionTypes.length > 0){ System.out.print("throws "); for(int i = 0;i < exceptionTypes.length;i++){ if(i == exceptionTypes.length - 1){ System.out.print(exceptionTypes[i].getName()); break; } System.out.print(exceptionTypes[i].getName() + ","); } } System.out.println(); } } }
5.全部的Field
下面展示一些 获取属性结构--Field(调用属性)
。
public class FieldTest { @Test public void test1(){ Class clazz = Person.class; //获取属性结构 //getFields():获取当前运行时类及其父类中声明为public访问权限的属性 Field[] fields = clazz.getFields(); for(Field f : fields){ System.out.println(f); } System.out.println(); //getDeclaredFields():获取当前运行时类中声明的所有属性。(不包含父类中声明的属性) Field[] declaredFields = clazz.getDeclaredFields(); for(Field f : declaredFields){ System.out.println(f); } } //权限修饰符 数据类型 变量名 @Test public void test2(){ Class clazz = Person.class; Field[] declaredFields = clazz.getDeclaredFields(); for(Field f : declaredFields){ //1.权限修饰符 int modifier = f.getModifiers(); System.out.print(Modifier.toString(modifier) + "\t"); //2.数据类型 Class type = f.getType(); System.out.print(type.getName() + "\t"); //3.变量名 String fName = f.getName(); System.out.print(fName); System.out.println(); } } }
6.Annotation相关
下面展示一些 获取运行时类声明的注解--getAnnotations()
。
/* 获取运行时类声明的注解 */ @Test public void test7(){ Class clazz = Person.class; Annotation[] annotations = clazz.getAnnotations(); for(Annotation annos : annotations){ System.out.println(annos); } }
7.泛型相关
获取父类泛型类型: Type getGenericSuperclass()
泛型类型: ParameterizedType
获取实际的泛型类型参数数组: getActualTypeArguments()
下面展示一些 获取运行时类的带泛型的父类
。
/* 获取运行时类的带泛型的父类 */ @Test public void test3(){ Class clazz = Person.class; Type genericSuperclass = clazz.getGenericSuperclass(); System.out.println(genericSuperclass); } /* 获取运行时类的带泛型的父类的泛型 代码:逻辑性代码 vs 功能性代码 */ @Test public void test4(){ Class clazz = Person.class; Type genericSuperclass = clazz.getGenericSuperclass(); ParameterizedType paramType = (ParameterizedType) genericSuperclass; //获取泛型类型 Type[] actualTypeArguments = paramType.getActualTypeArguments(); // System.out.println(actualTypeArguments[0].getTypeName()); System.out.println(((Class)actualTypeArguments[0]).getName()); }
8.类所在的包 Package getPackage()
下面展示一些 获取运行时类所在的包--getPackage()
。
/* 获取运行时类所在的包 */ @Test public void test6(){ Class clazz = Person.class; Package pack = clazz.getPackage(); System.out.println(pack); }
1.调用指定方法
通过反射,调用类中的方法,通过Method类完成。步骤:
①.通过Class类的getMethod(String name,Class…parameterTypes)方法取得一个Method对象,并设置此方法操作时所需要的参数类型。
②.之后使用Object invoke(Object obj, Object[] args)进行调用,并向方法中传递要设置的obj对象的参数信息。
Object invoke(Object obj, Object … args)
说明:
1.Object 对应原方法的返回值,若原方法无返回值,此时返回null
2.若原方法若为静态方法,此时形参Object obj可为null
3.若原方法形参列表为空,则Object[] args为null
4.若原方法声明为private,则需要在调用此invoke()方法前,显式调用
方法对象的setAccessible(true)方法,将可访问private的方法。
2.调用指定属性
在反射机制中,可以直接通过Field类操作类中的属性,通过Field类提供的set()和get()方法就可以完成设置和取得属性内容的操作。
关于setAccessible方法的使用
Method和Field、 Constructor对象都有setAccessible()方法。
setAccessible启动和禁用访问安全检查的开关。
参数值为true则指示反射的对象在使用时应该取消Java语言访问检查。
下面展示一些 调用运行时类的指定结构
。
public class ReflectionTest { /* 如何操作运行时类中的指定的属性 -- 需要掌握 */ @Test public void testField1() throws Exception { Class clazz = Person.class; //创建运行时类的对象 Person p = (Person) clazz.newInstance(); //1. getDeclaredField(String fieldName):获取运行时类中指定变量名的属性 Field name = clazz.getDeclaredField("name"); //2.保证当前属性是可访问的 name.setAccessible(true); //3.获取、设置指定对象的此属性值 name.set(p,"Tom"); System.out.println(name.get(p)); } /* 如何操作运行时类中的指定的方法 -- 需要掌握 */ @Test public void testMethod() throws Exception { Class clazz = Person.class; //创建运行时类的对象 Person p = (Person) clazz.newInstance(); /* 1.获取指定的某个方法 getDeclaredMethod():参数1 :指明获取的方法的名称 参数2:指明获取的方法的形参列表 */ Method show = clazz.getDeclaredMethod("show", String.class); //2.保证当前方法是可访问的 show.setAccessible(true); /* 3. 调用方法的invoke():参数1:方法的调用者 参数2:给方法形参赋值的实参 invoke()的返回值即为对应类中调用的方法的返回值。 */ Object returnValue = show.invoke(p,"CHN"); //String nation = p.show("CHN"); System.out.println(returnValue); System.out.println("*************如何调用静态方法*****************"); // private static void showDesc() Method showDesc = clazz.getDeclaredMethod("showDesc"); showDesc.setAccessible(true); //如果调用的运行时类中的方法没有返回值,则此invoke()返回null // Object returnVal = showDesc.invoke(null); Object returnVal = showDesc.invoke(Person.class); System.out.println(returnVal);//null } /* 如何调用运行时类中的指定的构造器 */ @Test public void testConstructor() throws Exception { Class clazz = Person.class; //private Person(String name) /* 1.获取指定的构造器 getDeclaredConstructor():参数:指明构造器的参数列表 */ Constructor constructor = clazz.getDeclaredConstructor(String.class); //2.保证此构造器是可访问的 constructor.setAccessible(true); //3.调用此构造器创建运行时类的对象 Person per = (Person) constructor.newInstance("Tom"); System.out.println(per); } }
下面展示一些 静态代理举例--特点:代理类和被代理类在编译期间,就已确定下来
。
interface ClothFactory{ void produceCloth(); } //代理类 class ProxyClothFactory implements ClothFactory{ private ClothFactory factory;//用被代理类对象进行实例化 public ProxyClothFactory(ClothFactory factory){ this.factory = factory; } @Override public void produceCloth() { System.out.println("代理工厂做一些准备工作"); factory.produceCloth(); System.out.println("代理工厂做一些后续的收尾工作"); } } //被代理类 class NikeClothFactory implements ClothFactory{ @Override public void produceCloth() { System.out.println("Nike工厂生产一批运动服"); } } public class StaticProxyTest { public static void main(String[] args) { //创建被代理类的对象 ClothFactory nike = new NikeClothFactory(); //创建代理类的对象 ClothFactory proxyClothFactory = new ProxyClothFactory(nike); proxyClothFactory.produceCloth(); } }
代理设计模式的原理:
使用一个代理将对象包装起来, 然后用该代理对象取代原始对象。任何对原始对象的调用都要通过代理。代理对象决定是否以及何时将方法调用转到原始对象上。(最好可以通过一个代理类完成全部的代理功能。)
动态代理是指客户通过代理类来调用其它对象的方法,并且是在程序运行时根据需要动态创建目标类的代理对象。
动态代理使用场合:
Proxy :专门完成代理的操作类,是所有动态代理类的父类。通过此类为一个或多个接口动态地生成实现类。
提供用于创建动态代理类和动态代理对象的静态方法
动态代理步骤
1.创建一个实现接口InvocationHandler的类,它必须实现invoke方法,以完成代理的具体操作。
2.创建被代理的类以及接口
3.通过Proxy的静态方法
newProxyInstance(ClassLoader loader, Class[] interfaces, InvocationHandler h) 创建一个Subject接口代理
RealSubject target = new RealSubject();
// Create a proxy to wrap the original implementation
DebugProxy proxy = new DebugProxy(target);
// Get a reference to the proxy through the Subject interface
Subject sub = (Subject) Proxy.newProxyInstance(
Subject.class.getClassLoader(),new Class[] { Subject.class }, proxy);
4.通过 Subject代理调用RealSubject实现类的方法
String info = sub.say(“Peter", 24);
System.out.println(info);
下面展示一些 动态代理实例
。
interface Human{ String getBelief(); void eat(String food); } //被代理类 class SuperMan implements Human{ @Override public String getBelief() { return "I believe I can fly!"; } @Override public void eat(String food) { System.out.println("我喜欢吃" + food); } } class HumanUtil{ public void method1(){ System.out.println("====================通用方法一===================="); } public void method2(){ System.out.println("====================通用方法二===================="); } } /* 要想实现动态代理,需要解决的问题? 问题一:如何根据加载到内存中的被代理类,动态的创建一个代理类及其对象。 问题二:当通过代理类的对象调用方法a时,如何动态的去调用被代理类中的同名方法a。 */ class ProxyFactory{ //调用此方法,返回一个代理类的对象。解决问题一 public static Object getProxyInstance(Object obj){//obj:被代理类的对象 MyInvocationHandler handler = new MyInvocationHandler(); handler.bind(obj); return Proxy.newProxyInstance(obj.getClass().getClassLoader(),obj.getClass().getInterfaces(),handler); } } class MyInvocationHandler implements InvocationHandler{ private Object obj;//需要使用被代理类的对象进行赋值 public void bind(Object obj){ this.obj = obj; } //当我们通过代理类的对象,调用方法a时,就会自动的调用如下的方法:invoke() //将被代理类要执行的方法a的功能就声明在invoke()中 @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { HumanUtil util = new HumanUtil(); util.method1(); //method:即为代理类对象调用的方法,此方法也就作为了被代理类对象要调用的方法 //obj:被代理类的对象 Object returnValue = method.invoke(obj,args); util.method2(); //上述方法的返回值就作为当前类中的invoke()的返回值。 return returnValue; } } public class ProxyTest { public static void main(String[] args) { SuperMan superMan = new SuperMan(); //proxyInstance:代理类的对象 Human proxyInstance = (Human) ProxyFactory.getProxyInstance(superMan); //当通过代理类对象调用方法时,会自动的调用被代理类中同名的方法 String belief = proxyInstance.getBelief(); System.out.println(belief); proxyInstance.eat("四川麻辣烫"); System.out.println("*****************************"); NikeClothFactory nikeClothFactory = new NikeClothFactory(); ClothFactory proxyClothFactory = (ClothFactory) ProxyFactory.getProxyInstance(nikeClothFactory); proxyClothFactory.produceCloth(); } }