Java教程

4种经典限流算法

本文主要是介绍4种经典限流算法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

在计算机网络中,限流就是控制网络接口发送或接收请求的速率,它可防止DoS攻击和限制Web爬虫。

限流,也称流量控制。是指系统在面临高并发,或者大流量请求的情况下,限制新的请求对系统的访问,从而保证系统的稳定性

常见的限流算法:

固定窗口限流算法

首先维护一个计数器,将单位时间段当做一个窗口,计数器记录这个窗口接收请求的次数。

  • 当次数少于限流阀值,就允许访问,并且计数器+1
  • 当次数大于限流阀值,就拒绝访问。
  • 当前的时间窗口过去之后,计数器清零。

假设单位时间是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。如下图:

 

 /**
     * 固定窗口时间算法
     * @return
     */
    boolean fixedWindowsTryAcquire() {
        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        if (currentTime - lastRequestTime > windowUnit) {  //检查是否在时间窗口内
            counter = 0;  // 计数器清0
            lastRequestTime = currentTime;  //开启新的时间窗口
        }
        if (counter < threshold) {  // 小于阀值
            counter++;  //计数器加1
            return true;
        }

        return false;
    }

 

=======》》》》》

这种算法有一个很明显的临界问题:假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s和1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义

========》》》》

 

滑动窗口限流算法

滑动窗口限流解决固定窗口临界值的问题。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。

 

 假设1s内的限流阀值还是5个请求,0.8~1.0s内(比如0.9s的时候)来了5个请求,落在黄色格子里。时间过了1.0s这个点之后,又来5个请求,落在紫色格子里。如果是固定窗口算法,是不会被限流的,但是滑动窗口的话,每过一个小周期,它会右移一个小格。过了1.0s这个点后,会右移一小格,当前的单位时间段是0.2~1.2s,这个区域的请求已经超过限定的5了,已触发限流啦,实际上,紫色格子的请求都被拒绝。

TIPS: 当滑动窗口的格子周期划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

/**
     * 单位时间划分的小周期(单位时间是1分钟,10s一个小格子窗口,一共6个格子)
     */
    private int SUB_CYCLE = 10;

    /**
     * 每分钟限流请求数
     */
    private int thresholdPerMin = 100;

    /**
     * 计数器, k-为当前窗口的开始时间值秒,value为当前窗口的计数
     */
    private final TreeMap<Long, Integer> counters = new TreeMap<>();

   /**
     * 滑动窗口时间算法实现
     */
    boolean slidingWindowsTryAcquire() {
        long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口
        int currentWindowNum = countCurrentWindow(currentWindowTime); //当前窗口总请求数

        //超过阀值限流
        if (currentWindowNum >= thresholdPerMin) {
            return false;
        }

        //计数器+1
        counters.get(currentWindowTime)++;
        return true;
    }

   /**
    * 统计当前窗口的请求数
    */
    private int countCurrentWindow(long currentWindowTime) {
        //计算窗口开始位置
        long startTime = currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);
        int count = 0;

        //遍历存储的计数器
        Iterator<Map.Entry<Long, Integer>> iterator = counters.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry<Long, Integer> entry = iterator.next();
            // 删除无效过期的子窗口计数器
            if (entry.getKey() < startTime) {
                iterator.remove();
            } else {
                //累加当前窗口的所有计数器之和
                count =count + entry.getValue();
            }
        }
        return count;
    }

漏桶算法:

原理:往漏桶中以任意速率流入水,以固定的速率流出水。当水超过桶的容量时,会被溢出,也就是被丢弃。因为桶容量是不变的,保证了整体的速率。

 

 

  • 流入的水滴,可以看作是访问系统的请求,这个流入速率是不确定的。
  • 桶的容量一般表示系统所能处理的请求数。
  • 如果桶的容量满了,就达到限流的阀值,就会丢弃水滴(拒绝请求)
  • 流出的水滴,是恒定过滤的,对应服务按照固定的速率处理请求。

/**
     * 每秒处理数(出水率)
     */
    private long rate;

    /**
     *  当前剩余水量
     */
    private long currentWater;

    /**
     * 最后刷新时间
     */
    private long refreshTime;

    /**
     * 桶容量
     */
    private long capacity;

    /**
     * 漏桶算法
     * @return
     */
    boolean leakybucketLimitTryAcquire() {
        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        long outWater = (currentTime - refreshTime) / 1000 * rate; //流出的水量 =(当前时间-上次刷新时间)* 出水率
        long currentWater = Math.max(0, currentWater - outWater); // 当前水量 = 之前的桶内水量-流出的水量
        refreshTime = currentTime; // 刷新时间

        // 当前剩余水量还是小于桶的容量,则请求放行
        if (currentWater < capacity) {
            currentWater++;
            return true;
        }
        
        // 当前剩余水量大于等于桶的容量,限流
        return false;
    }

令牌桶算法

令牌桶算法原理

  • 有一个令牌管理员,根据限流大小,定速往令牌桶里放令牌。
  • 如果令牌数量满了,超过令牌桶容量的限制,那就丢弃。
  • 系统在接受到一个用户请求时,都会先去令牌桶要一个令牌。如果拿到令牌,那么就处理这个请求的业务逻辑;
  • 如果拿不到令牌,就直接拒绝这个请求。
  •  

         /**
         * 每秒处理数(放入令牌数量)
         */
        private long putTokenRate;
        
        /**
         * 最后刷新时间
         */
        private long refreshTime;

        /**
         * 令牌桶容量
         */
        private long capacity;
        
        /**
         * 当前桶内令牌数
         */
        private long currentToken = 0L;

        /**
         * 漏桶算法
         * @return
         */
        boolean tokenBucketTryAcquire() {

            long currentTime = System.currentTimeMillis();  //获取系统当前时间
            long generateToken = (currentTime - refreshTime) / 1000 * putTokenRate; //生成的令牌 =(当前时间-上次刷新时间)* 放入令牌的速率
            currentToken = Math.min(capacity, generateToken + currentToken); // 当前令牌数量 = 之前的桶内令牌数量+放入的令牌数量
            refreshTime = currentTime; // 刷新时间
            
            //桶里面还有令牌,请求正常处理
            if (currentToken > 0) {
                currentToken--; //令牌数量-1
                return true;
            }
            
            return false;
        }

这篇关于4种经典限流算法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!