程序执行前需要先放到内存中才能被CPU处理。
如果计算机“按字节编址”则每个存储单元大小为1字节,即1B,即8个二进制位
如果字长为16位的计算机“按字编址”,则每个存储单元大小为1个字;每个字的大小为16个二进制位
内存大小 4GB = 4 * 230个字节 —— 地址长度为 32位
装入模块中的指令地址指的是“相对地址”(逻辑地址),即:相对于开始地址而言的地址。
编译、链接后得到的装入模块的指令直接就使用了绝对地址(物理地址)
1.绝对装入(只适用于单道程序环境)
在编译时,如果知道程序将放到内存中的哪个位置,编译程序将产生绝对地址的目标代码。装入程序按照装入模块中的地址,将程序和数据装入内存。
2.静态重定位(可重定位装入)
编译、链接后的装入模块的地址都是从0开始的,指令中使用的地址、数据存放的地址都是相对于起始地址而言的逻辑地址。可根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对地址进行“重定位”,将逻辑地址变换为物理地址(地址变换是在装入时一次完成的)。
静态重定位的特点是在一个作业装入内存时,必须分配其要求的全部内存空间,如果没有足够的内存,就不能装入该作业。作业一旦进入内存后,在运行期间就不能再移动,也不能再申请内存空间。
3.动态重定位(动态运行时装入)
编译、链接后的装入模块的地址都是从0开始的。装入程序把装入模块装入内存后,并不会立即把逻辑地址转换为物理地址,而是把地址转换推迟到程序真正要执行时才进行。因此装入内存后所有的地址依然是逻辑地址。这种方式需要一个重定位寄存器(存放装入模块存放的起始位置)的支持。
采用动态重定位时允许程序在内存中发生移动。
并且可将程序分配到不连续的存储区中;在程序运行前只需装入它的部分代码即可投入运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享,可以向用户提供一个比存储空间大得多的地址空间。
1.静态链接:在程序运行之前,先将各目标模块及它们所需的库函数连接成一个完整的可执行文件(装入模块),之后不再拆开。
2.装入时动态链接:将各目标模块装入内存时,边装入边链接的链接方式。
3.运行时动态链接:在程序执行中需要该目标模块时,才对它进行链接。其优点是便于修改和更新,便于实现对目标模块的共享。
1.操作系统负责内存空间的分配与回收
2.操作系统需要提供某种技术从逻辑上对内存空间进行扩充
3.操作系统需要提供地址转换功能,负责程序的逻辑地址与物理地址的转换
4.操作系统需要提供内存保护功能。保证各进程在各自存储空间内运行,互不干扰
内存保护可采取两种方法:
方法一:在CPU中设置一对上、下限寄存器,存放进程的上、下限地址。进程的指令要访问某个地址时,CPU检查是否越界。
方法二:采用重定位寄存器(又称基址寄存器)和界地址寄存器(又称限长寄存器)进行越界检查。重定位寄存器中存放的是进程的起始物理地址。界地址寄存器中存放的是进程的最大逻辑地址。
覆盖技术的思想:将程序分为多个段(多个模块)。常用的段常驻内存,不常用的段在需要时调入内存。
内存中分为一个“固定区”和若干个“覆盖区”。
需要常驻内存的段放在“固定区”中,调入后就不再调出(除非运行结束),即运行时不会调入调出
不常用的段放在“覆盖区”,需要用到时调入内存,用不到时调出内存,即运行时根据需要会调入调出
必须由程序员声明覆盖结构,操作系统完成自动覆盖。
缺点:对用户不透明,增加了用户编程负担。
交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些已具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)
暂时换出外存等待的进程状态为挂起状态(挂起态,suspend)
挂起态又可以进一步细分为就绪挂起、阻塞挂起两种状态
中级调度(内存调度),就是要决定将哪个处于挂起状态的进程重新调入内存。
1.应该在外存(磁盘)的什么位置保存被换出的进程?
具有对换功能的操作系统中,通常把磁盘空间分为文件区和对换区两部分。
文件区主要用于存放文件,主要追求存储空间的利用率,因此对文件区空间的管理采用离散分配方式;
对换区空间只占磁盘空间的小部分,被换出的进程数据就存放在对换区。由于对换的速度直接影响到系统的整体速度,因此对换区空间的管理主要追求换入换出速度,因此通常对换区采用连续分配方式(学过文件管理章节后即可理解)。
总之,对换区的I/O速度比文件区的更快。
2.什么时候应该交换?
交换通常在许多进程运行且内存吃紧时进行,而系统负荷降低就暂停。例如:在发现许多进程运行时经常发生缺页,就说明内存紧张,此时可以换出一些进程;如果缺页率明显下降,就可以暂停换出。
3.应该换出哪些进程?
可优先换出阻塞进程;可换出优先级低的进程;为了防止优先级低的进程在被调入内存后很快又被换出,有的系统还会考虑进程在内存的驻留时间…
连续分配:指为用户进程分配的必须是一个连续的内存空间。
动态分区分配又称为可变分区分配。这种分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的大小和数目是可变的。
动态分区分配没有内部碎片,但是有外部碎片。
内部碎片,分配给某进程的内存区域中,如果有些部分没有用上。
外部碎片,是指内存中的某些空闲分区由于太小而难以利用。
如果内存中空闲空间的总和本来可以满足某进程的要求,但由于进程需要的是一整块连续的内存空间,因此这些“碎片”不能满足进程的需求。可以通过紧凑(拼凑,Compaction)技术来解决外部碎片。
1.系统要用什么样的数据结构记录内存的使用情况?
空闲分区表:每个空闲分区对应个表项。表项中包含分区号分区大小、分区起始地址等信息。
空闲分区链:每个分区的起始部分和末尾部分分别设置前向指针和后向指针。起始部分处还可记录分区大小等信息。
2.当很多个空闲分区都能满足需求时,应该选择哪个分区进行分配?
把一个新作业装入内存时,须按照一定的动态分区分配算法,从空闲分区表(或空闲分区链)中选出一个分区分配给该作业。
3.如何进行分区的分配与回收操作?
合并相邻的空闲分区
算法思想:每次都从低地址开始查找,找到第一个能满足大小的空闲分区。
实现:空闲分区以地址递增的次序排列。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
算法思想:由于动态分区分配是一种连续分配方式,为各进程分配的空间必须是连续的一整片区域。因此为了保证当“大进程”到来时能有连续的大片空间,可以尽可能多地留下大片的空闲区,即,优先使用更小的空闲区。
实现:空闲分区按容量递增次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表)),找到大小能满足要求的第一个空闲分区。
缺点:每次都选最小的分区进行分配,会留下越来越多的、很小的、难以利用的内存块。因此这种方法会产生很多的外部碎片。
又称最大适应算法(Largest Fit)
算法思想:为了解决最佳适应算法的问题――即留下太多难以利用的小碎片,可以在每次分配时优先使用最大的连续空闲区,这样分配后剩余的空闲区就不会太小,更方便使用。
实现:空闲分区按容量递减次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
缺点:每次都选最大的分区进行分配,虽然可以让分配后留下的空闲区更大,更可用,但是这种方式会导致较大的连续空闲区被迅速用完。如果之后有“大进程”到达,就没有内存分区可用了。
算法思想:首次适应算法每次都从链头开始查找的。这可能会导致低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。如果每次都从上次查找结束的位置开始检索,就能解决上述问题。
实现:空闲分区以地址递增的顺序排列(可排成一个循环链表)。每次分配内存时从上次查找结束的位置开始查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
首次适应算法每次都要从头查找,每次都需要检索低地址的小分区。但是这种规则也决定了当低地址部分有更小的分区可以满足需求时,会更有可能用到低地址部分的小分区,也会更有可能把高地址部分的大分区保留下来(最佳适应算法的优点)
邻近适应算法的规则可能会导致无论低地址、高地址部分的空闲分区都有相同的概率被使用,也就导致了高地址部分的大分区更可能被使用,划分为小分区,最后导致无大分区可用(最大适应算法的缺点)