本专栏用于记录关于深度学习的笔记,不光方便自己复习与查阅,同时也希望能给您解决一些关于深度学习的相关问题,并提供一些微不足道的人工神经网络模型设计思路。
专栏地址:「深度学习一遍过」必修篇
目录
1 CreateDataset——生成训练集和测试集
1.1 思路
1.2 代码
1.3 结果
2 CreateDataloader——数据加载
2.1 思路
2.2 代码
2.3 结果
3 加载自己的数据——使用DataLoader读取Dataset
3.1 思路
3.2 代码
3.3 结果
生成训练集和测试集,保存在 txt 文件中。
相当于模型的输入。后面做数据加载器 dataload 的时候从里面读它的数据。
导入库
import os # 导入系统库 import random # 随机数生成器(打乱数据用的)
百分之 60 用来当训练集
百分制 40 用来当测试集
train_ratio = 0.6 test_ratio = 1 - train_ratio
数据的根目录,保存到这个根目录下的 data 文件夹
rootdata = r"data"
产生 train.txt 和 test.txt
前一部分:图片所在目录/位置;
后一部分:图片对应标签 具体如下图所示
打乱训练数据集次序
random.shuffle(train_list)
写入 train.txt 和 test.txt
import os import random train_ratio = 0.6 test_ratio = 1 - train_ratio rootdata = r"data" train_list, test_list = [], [] data_list = [] class_flag = -1 for a, b, c in os.walk(rootdata): print(a) for i in range(len(c)): data_list.append(os.path.join(a, c[i])) for i in range(0, int(len(c) * train_ratio)): train_data = os.path.join(a, c[i]) + '\t' + str(class_flag) + '\n' # os.path.join 拼接起来,给一个从0开始逐一编号的标签 train_list.append(train_data) for i in range(int(len(c) * train_ratio), len(c)): test_data = os.path.join(a, c[i]) + '\t' + str(class_flag) + '\n' test_list.append(test_data) class_flag += 1 print(train_list) random.shuffle(train_list) random.shuffle(test_list) with open('train.txt', 'w', encoding='UTF-8') as f: for train_img in train_list: f.write(str(train_img)) with open('test.txt', 'w', encoding='UTF-8') as f: for test_img in test_list: f.write(test_img)
把数据传入模型中进行训练。
图片标准化
transform_BZ= transforms.Normalize( mean=[0.5, 0.5, 0.5],# 取决于数据集 std=[0.5, 0.5, 0.5] )
加载得到图片信息
def get_images(self, txt_path): with open(txt_path, 'r', encoding='utf-8') as f: imgs_info = f.readlines() imgs_info = list(map(lambda x:x.strip().split('\t'), imgs_info)) return imgs_info
训练与测试数据的归一化与标准化
self.train_tf = transforms.Compose([ transforms.Resize(224), # 将图片压缩成224*224的大小 transforms.RandomHorizontalFlip(), # 对图片进行随机的水平翻转 transforms.RandomVerticalFlip(), # 随机的垂直翻转 transforms.ToTensor(), # 把图片改为Tensor格式 transform_BZ # 图片标准化的步骤 ]) self.val_tf = transforms.Compose([ # 简单把图片压缩了变成Tensor模式 transforms.Resize(224), transforms.ToTensor(), transform_BZ # 标准化操作 ])
填充黑色操作,如果尺寸太小可以扩充,填充黑色使得图片成为 224*224。
def padding_black(self, img): w, h = img.size scale = 224. / max(w, h) img_fg = img.resize([int(x) for x in [w * scale, h * scale]]) size_fg = img_fg.size size_bg = 224 img_bg = Image.new("RGB", (size_bg, size_bg)) img_bg.paste(img_fg, ((size_bg - size_fg[0]) // 2, (size_bg - size_fg[1]) // 2)) img = img_bg return img
True 为将 "train.txt" 文件数据看做训练集对待
train_dataset = LoadData("train.txt", True)
import torch from PIL import Image import torchvision.transforms as transforms from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from torch.utils.data import Dataset transform_BZ= transforms.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5] ) class LoadData(Dataset): def __init__(self, txt_path, train_flag=True): self.imgs_info = self.get_images(txt_path) self.train_flag = train_flag self.train_tf = transforms.Compose([ transforms.Resize(224), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transform_BZ ]) self.val_tf = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transform_BZ ]) def get_images(self, txt_path): with open(txt_path, 'r', encoding='utf-8') as f: imgs_info = f.readlines() imgs_info = list(map(lambda x:x.strip().split('\t'), imgs_info)) return imgs_info def padding_black(self, img): w, h = img.size scale = 224. / max(w, h) img_fg = img.resize([int(x) for x in [w * scale, h * scale]]) size_fg = img_fg.size size_bg = 224 img_bg = Image.new("RGB", (size_bg, size_bg)) img_bg.paste(img_fg, ((size_bg - size_fg[0]) // 2, (size_bg - size_fg[1]) // 2)) img = img_bg return img def __getitem__(self, index): # 返回真正想返回的东西 img_path, label = self.imgs_info[index] img = Image.open(img_path) img = img.convert('RGB') img = self.padding_black(img) if self.train_flag: img = self.train_tf(img) else: img = self.val_tf(img) label = int(label) return img, label def __len__(self): return len(self.imgs_info) if __name__ == "__main__": train_dataset = LoadData("train.txt", True) print("数据个数:", len(train_dataset)) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=10, shuffle=True) for image, label in train_loader: print(image.shape) print(image) print(label)
定义网络模型
class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() # 碾平,将数据碾平为一维 self.flatten = nn.Flatten() # 定义linear_relu_stack,由以下众多层构成 self.linear_relu_stack = nn.Sequential( # 全连接层 nn.Linear(3*224*224, 512), # ReLU激活函数 nn.ReLU(), # 全连接层 nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 5), # 5个类别按照分类数来 nn.ReLU() ) # x为传入数据 def forward(self, x): # x先经过碾平变为1维 x = self.flatten(x) # 随后x经过linear_relu_stack logits = self.linear_relu_stack(x) # 输出logits return logits
定义训练函数
def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 从数据加载器中读取batch(一次读取多少张,即批次数),X(图片数据),y(图片真实标签)。 for batch, (X, y) in enumerate(dataloader): # 将数据存到显卡 X, y = X.cuda(), y.cuda() # 得到预测的结果pred pred = model(X) # 计算预测的误差 # print(pred,y) loss = loss_fn(pred, y) # 反向传播,更新模型参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每训练100次,输出一次当前信息 if batch % 100 == 0: loss, current = loss.item(), batch * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
定义测试函数
def test(dataloader, model): size = len(dataloader.dataset) print("size = ",size) # 将模型转为验证模式 model.eval() # 初始化test_loss 和 correct, 用来统计每次的误差 test_loss, correct = 0, 0 # 测试时模型参数不用更新,所以no_gard() # 非训练, 推理期用到 with torch.no_grad(): # 加载数据加载器,得到里面的X(图片数据)和y(真实标签) for X, y in dataloader: # 将数据转到GPU X, y = X.cuda(), y.cuda() # 将图片传入到模型当中就,得到预测的值pred pred = model(X) # 计算预测值pred和真实值y的差距 test_loss += loss_fn(pred, y).item() # 统计预测正确的个数 correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= size correct /= size print("correct = ",correct) print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
给训练集和测试集分别创建一个数据集加载器
train_data = LoadData("train.txt", True) valid_data = LoadData("test.txt", False)
num_workers :CPU开多线程读取数据(数字越大读取速度越快,适合多少要看 CPU 多线程能力有多强);
pin_memory = True :原本先放到内存在放到显卡,现在避免放到电脑虚拟内存中,这样写使得读取速度变快;
batch_size = batch_size :一次读多少数据;
shuffle = True :每次读取数据进行打乱。
而测试数据集不需打乱数据。
train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size)
如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else "cpu"
调用刚定义的模型,将模型转到GPU(如果可用)
model = NeuralNetwork().to(device)
定义损失函数,计算相差多少,交叉熵,
loss_fn = nn.CrossEntropyLoss()
定义优化器,用来训练时候优化模型参数,随机梯度下降法
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) # lr:初始学习率
读取训练好的模型,加载训练好的参数
model = NeuralNetwork() model.load_state_dict(torch.load("model.pth"))
import torch from torch import nn from torch.utils.data import DataLoader from transfer_learning.CreateDataloader import LoadData # 定义网络模型 class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(3*224*224, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 5), nn.ReLU() ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits # 定义训练函数 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) for batch, (X, y) in enumerate(dataloader): X, y = X.cuda(), y.cuda() pred = model(X) loss = loss_fn(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() if batch % 100 == 0: loss, current = loss.item(), batch * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") # 定义测试函数 def test(dataloader, model): size = len(dataloader.dataset) print("size = ",size) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.cuda(), y.cuda() pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= size correct /= size print("correct = ",correct) print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") if __name__=='__main__': batch_size = 16 train_data = LoadData("train.txt", True) valid_data = LoadData("test.txt", False) train_dataloader = DataLoader(dataset=train_data, num_workers=4, pin_memory=True, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(dataset=valid_data, num_workers=4, pin_memory=True, batch_size=batch_size) for X, y in test_dataloader: print("Shape of X [N, C, H, W]: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) model = NeuralNetwork().to(device) print(model) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) epochs = 5 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(train_dataloader, model, loss_fn, optimizer) test(test_dataloader, model) print("Done!") model = NeuralNetwork() model.load_state_dict(torch.load("model.pth"))
版权声明:本文为CSDN博主「荣仔!最靓的仔!」的原创文章,遵循 CC 4.0 BY-SA 版权协议。 转载请在醒目位置附上原文出处链接及本声明。