Java教程

java基础-泛型

本文主要是介绍java基础-泛型,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

泛型机制

泛型上下限

泛型上下限的引入
在使用泛型的时候,我们可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。

上限

class Info<T extends Number>{    // 此处泛型只能是数字类型
    private T var ;        // 定义泛型变量
    public void setVar(T var){
        this.var = var ;
    }
    public T getVar(){
        return this.var ;
    }
    public String toString(){    // 直接打印
        return this.var.toString() ;
    }
}
public class demo1{
    public static void main(String args[]){
        Info<Integer> i1 = new Info<Integer>() ;        // 声明Integer的泛型对象
    }
}

下限

class Info<T>{
    private T var ;        // 定义泛型变量
    public void setVar(T var){
        this.var = var ;
    }
    public T getVar(){
        return this.var ;
    }
    public String toString(){    // 直接打印
        return this.var.toString() ;
    }
}
public class GenericsDemo21{
    public static void main(String args[]){
        Info<String> i1 = new Info<String>() ;        // 声明String的泛型对象
        Info<Object> i2 = new Info<Object>() ;        // 声明Object的泛型对象
        i1.setVar("hello") ;
        i2.setVar(new Object()) ;
        fun(i1) ;
        fun(i2) ;
    }
    public static void fun(Info<? super String> temp){    // 只能接收String或Object类型的泛型,String类的父类只有Object类
        System.out.print(temp + ", ") ;
    }
}
  

小结

<?> 无限制通配符
<? extends E> extends 关键字声明了类型的上界,表示参数化的类型可能是所指定的类型,或者是此类型的子类
<? super E> super 关键字声明了类型的下界,表示参数化的类型可能是指定的类型,或者是此类型的父类

// 使用原则《Effictive Java》
// 为了获得最大限度的灵活性,要在表示 生产者或者消费者 的输入参数上使用通配符,使用的规则就是:生产者有上限、消费者有下限
1. 如果参数化类型表示一个 T 的生产者,使用 < ? extends T>;
2. 如果它表示一个 T 的消费者,就使用 < ? super T>;
3. 如果既是生产又是消费,那使用通配符就没什么意义了,因为你需要的是精确的参数类型。

再看一个实际例子,加深印象

private  <E extends Comparable<? super E>> E max(List<? extends E> e1) {
    if (e1 == null){
        return null;
    }
    //迭代器返回的元素属于 E 的某个子类型
    Iterator<? extends E> iterator = e1.iterator();
    E result = iterator.next();
    while (iterator.hasNext()){
        E next = iterator.next();
        if (next.compareTo(result) > 0){
            result = next;
        }
    }
    return result;
}

上述代码中的类型参数 E 的范围是

<E extends Comparable<? super E>>

,我们可以分步查看:

  1. 要进行比较,所以 E 需要是可比较的类,因此需要 extends Comparable<…>(注意这里不要和继承的 extends 搞混了,不一样)
  2. Comparable< ? super E> 要对 E 进行比较,即 E 的消费者,所以需要用 super
  3. 而参数 List< ? extends E> 表示要操作的数据是 E 的子类的列表,指定上限,这样容器才够大
  4. 多个限制

使用&符号

public class Client {
    //工资低于2500元的上斑族并且站立的乘客车票打8折
    public static <T extends Staff & Passenger> void discount(T t){
        if(t.getSalary()<2500 && t.isStanding()){
            System.out.println("恭喜你!您的车票打八折!");
        }
    }
    public static void main(String[] args) {
        discount(new Me());
    }
}

泛型数组

泛型数组相关的申明:

List<String>[] list11 = new ArrayList<String>[10]; //编译错误,非法创建 
List<String>[] list12 = new ArrayList<?>[10]; //编译错误,需要强转类型 
List<String>[] list13 = (List<String>[]) new ArrayList<?>[10]; //OK,但是会有警告 
List<?>[] list14 = new ArrayList<String>[10]; //编译错误,非法创建 
List<?>[] list15 = new ArrayList<?>[10]; //OK 
List<String>[] list6 = new ArrayList[10]; //OK,但是会有警告

讨巧的使用场景

public class GenericsDemo30{  
    public static void main(String args[]){  
        Integer i[] = fun1(1,2,3,4,5,6) ;   // 返回泛型数组  
        fun2(i) ;  
    }  
    public static <T> T[] fun1(T...arg){  // 接收可变参数  
        return arg ;            // 返回泛型数组  
    }  
    public static <T> void fun2(T param[]){   // 输出  
        System.out.print("接收泛型数组:") ;  
        for(T t:param){  
            System.out.print(t + "、") ;  
        }  
    }  
}

合理使用

public ArrayWithTypeToken(Class<T> type, int size) {
    array = (T[]) Array.newInstance(type, size);
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

证明类型的擦除

  • 原始类型相等
public class Test {

    public static void main(String[] args) {

        ArrayList<String> list1 = new ArrayList<String>();
        list1.add("abc");

        ArrayList<Integer> list2 = new ArrayList<Integer>();
        list2.add(123);

        System.out.println(list1.getClass() == list2.getClass()); // true
    }
}

  • 通过反射添加其它类型元素
public class Test {

    public static void main(String[] args) throws Exception {

        ArrayList<Integer> list = new ArrayList<Integer>();

        list.add(1);  //这样调用 add 方法只能存储整形,因为泛型类型的实例为 Integer

        list.getClass().getMethod("add", Object.class).invoke(list, "asd");

        for (int i = 0; i < list.size(); i++) {
            System.out.println(list.get(i));
        }
    }

}

在程序中定义了一个ArrayList泛型类型实例化为Integer对象,如果直接调用add()方法,那么只能存储整数数据,不过当我们利用反射调用add()方法的时候,却可以存储字符串,这说明了Integer泛型实例在编译之后被擦除掉了,只保留了原始类型。

泛型的桥接方法

类型擦除会造成多态的冲突,而JVM解决方法就是桥接方法。

现在有这样一个泛型类:

class Pair<T> {  

    private T value;  

    public T getValue() {  
        return value;  
    }  

    public void setValue(T value) {  
        this.value = value;  
    }  
}

然后我们想要一个子类继承它。

class DateInter extends Pair<Date> {  

    @Override  
    public void setValue(Date value) {  
        super.setValue(value);  
    }  

    @Override  
    public Date getValue() {  
        return super.getValue();  
    }  
}

在这个子类中,我们设定父类的泛型类型为Pair,在子类中,我们覆盖了父类的两个方法,我们的原意是这样的:将父类的泛型类型限定为Date,那么父类里面的两个方法的参数都为Date类型。

public Date getValue() {  
    return value;  
}  

public void setValue(Date value) {  
    this.value = value;  
}

所以,我们在子类中重写这两个方法一点问题也没有,实际上,从他们的@Override标签中也可以看到,一点问题也没有,实际上是这样的吗?
分析:实际上,类型擦除后,父类的的泛型类型全部变为了原始类型Object,所以父类编译之后会变成下面的样子:

class Pair {  
    private Object value;  

    public Object getValue() {  
        return value;  
    }  

    public void setValue(Object  value) {  
        this.value = value;  
    }  
} 

再看子类的两个重写的方法的类型:

@Override  
public void setValue(Date value) {  
    super.setValue(value);  
}  
@Override  
public Date getValue() {  
    return super.getValue();  
}

先来分析setValue方法,父类的类型是Object,而子类的类型是Date,参数类型不一样,这如果实在普通的继承关系中,根本就不会是重写,而是重载。 我们在一个main方法测试一下:

public static void main(String[] args) throws ClassNotFoundException {  
        DateInter dateInter = new DateInter();  
        dateInter.setValue(new Date());                  
        dateInter.setValue(new Object()); //编译错误  
}

如果是重载,那么子类中两个setValue方法,一个是参数Object类型,一个是Date类型,可是我们发现,根本就没有这样的一个子类继承自父类的Object类型参数的方法。所以说,却是是重写了,而不是重载了。

为什么会这样呢?

原因是这样的,我们传入父类的泛型类型是Date,Pair,我们的本意是将泛型类变为如下:

class Pair {  
    private Date value;  
    public Date getValue() {  
        return value;  
    }  
    public void setValue(Date value) {  
        this.value = value;  
    }  
}

然后再子类中重写参数类型为Date的那两个方法,实现继承中的多态。
可是由于种种原因,虚拟机并不能将泛型类型变为Date,只能将类型擦除掉,变为原始类型Object。这样,我们的本意是进行重写,实现多态。可是类型擦除后,只能变为了重载。这样,类型擦除就和多态有了冲突。JVM知道你的本意吗?知道!!!可是它能直接实现吗,不能!!!如果真的不能的话,那我们怎么去重写我们想要的Date类型参数的方法啊。

于是JVM采用了一个特殊的方法,来完成这项功能,那就是桥方法。

首先,我们用javap -c className的方式反编译下DateInter子类的字节码,结果如下:

class com.tao.test.DateInter extends com.tao.test.Pair<java.util.Date> {  
  com.tao.test.DateInter();  
    Code:  
       0: aload_0  
       1: invokespecial #8                  // Method com/tao/test/Pair."<init>":()V  
       4: return  

  public void setValue(java.util.Date);  //我们重写的setValue方法  
    Code:  
       0: aload_0  
       1: aload_1  
       2: invokespecial #16                 // Method com/tao/test/Pair.setValue:(Ljava/lang/Object;)V  
       5: return  

  public java.util.Date getValue();    //我们重写的getValue方法  
    Code:  
       0: aload_0  
       1: invokespecial #23                 // Method com/tao/test/Pair.getValue:()Ljava/lang/Object;  
       4: checkcast     #26                 // class java/util/Date  
       7: areturn  

  public java.lang.Object getValue();     //编译时由编译器生成的巧方法  
    Code:  
       0: aload_0  
       1: invokevirtual #28                 // Method getValue:()Ljava/util/Date 去调用我们重写的getValue方法;  
       4: areturn  

  public void setValue(java.lang.Object);   //编译时由编译器生成的巧方法  
    Code:  
       0: aload_0  
       1: aload_1  
       2: checkcast     #26                 // class java/util/Date  
       5: invokevirtual #30                 // Method setValue:(Ljava/util/Date; 去调用我们重写的setValue方法)V  
       8: return  
}

从编译的结果来看,我们本意重写setValue和getValue方法的子类,竟然有4个方法,其实不用惊奇,最后的两个方法,就是编译器自己生成的桥方法。可以看到桥方法的参数类型都是Object,也就是说,子类中真正覆盖父类两个方法的就是这两个我们看不到的桥方法。而打在我们自己定义的setvalue和getValue方法上面的@Oveerride只不过是假象。而桥方法的内部实现,就只是去调用我们自己重写的那两个方法。
所以,虚拟机巧妙的使用了桥方法,来解决了类型擦除和多态的冲突。

基本类型不能作为泛型类型

因为当类型擦除后,ArrayList的原始类型变为Object,但是Object类型不能存储int值,只能引用Integer的值。

如何理解泛型类型不能实例化?

不能实例化泛型类型, 这本质上是由于类型擦除决定的:

我们可以看到如下代码会在编译器中报错:

T test = new T(); // ERROR

因为在 Java 编译期没法确定泛型参数化类型,也就找不到对应的类字节码文件,所以自然就不行了,此外由于T 被擦除为 Object,如果可以 new T() 则就变成了 new Object(),失去了本意。

如果我们确实需要实例化一个泛型,应该如何做呢?可以通过反射实现:

static <T> T newTclass (Class < T > clazz) throws InstantiationException, IllegalAccessException {
    T obj = clazz.newInstance();
    return obj;
}

泛型数组:能不能采用具体的泛型类型进行初始化?

List<String>[] lsa = new List<String>[10]; // Not really allowed.
Object o = lsa;
Object[] oa = (Object[]) o;
List<Integer> li = new ArrayList<Integer>();
li.add(new Integer(3));
oa[1] = li; // Unsound, but passes run time store check
String s = lsa[1].get(0); // Run-time error ClassCastException.

由于 JVM 泛型的擦除机制,所以上面代码可以给 oa[1] 赋值为 ArrayList 也不会出现异常,但是在取出数据的时候却要做一次类型转换,所以就会出现 ClassCastException,如果可以进行泛型数组的声明则上面说的这种情况在编译期不会出现任何警告和错误,只有在运行时才会出错,但是泛型的出现就是为了消灭 ClassCastException,所以如果 Java 支持泛型数组初始化操作就是搬起石头砸自己的脚。

而对于下面的代码来说是成立的:

List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type.
Object o = lsa;
Object[] oa = (Object[]) o;
List<Integer> li = new ArrayList<Integer>();
li.add(new Integer(3));
oa[1] = li; // Correct.
Integer i = (Integer) lsa[1].get(0); // OK

所以说采用通配符的方式初始化泛型数组是允许的,因为对于通配符的方式最后取出数据是要做显式类型转换的,符合预期逻辑。综述就是说Java 的泛型数组初始化时数组类型不能是具体的泛型类型,只能是通配符的形式,因为具体类型会导致可存入任意类型对象,在取出时会发生类型转换异常,会与泛型的设计思想冲突,而通配符形式本来就需要自己强转,符合预期。

其余完整内容链接

这篇关于java基础-泛型的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!