说明:1.1节主要是概括和帮助理解考虑影响因素的BP神经网络算法原理,即常规的BP模型训练原理讲解(可根据自身掌握的知识是否跳过)。1.2节开始讲基于历史值影响的BP神经网络预测模型。
使用BP神经网络进行预测时,从考虑的输入指标角度,主要有两类模型:
如图一所示,使用MATLAB的newff函数训练BP时,可以看到大部分情况是三层的神经网络(即输入层,隐含层,输出层)。这里帮助理解下神经网络原理:
1)输入层:相当于人的五官,五官获取外部信息,对应神经网络模型input端口接收输入数据的过程。
2)隐含层:对应人的大脑,大脑对五官传递来的数据进行分析和思考,神经网络的隐含层hidden Layer对输入层传来的数据x进行映射,简单理解为一个公式hiddenLayer_output=F(w*x+b)。其中,w、b叫做权重、阈值参数,F()为映射规则,也叫激活函数,hiddenLayer_output是隐含层对于传来的数据映射的输出值。换句话说,隐含层对于输入的影响因素数据x进行了映射,产生了映射值。
3)输出层:可以对应为人的四肢,大脑对五官传来的信息经过思考(隐含层映射)之后,再控制四肢执行动作(向外部作出响应)。类似地,BP神经网络的输出层对hiddenLayer_output再次进行映射,outputLayer_output=w *hiddenLayer_output+b。其中,w、b为权重、阈值参数,outputLayer_output是神经网络输出层的输出值(也叫仿真值、预测值)(理解为,人脑对外的执行动作,比如婴儿拍打桌子)。
4)梯度下降算法:通过计算outputLayer_output和神经网络模型传入的y值之间的偏差,使用算法来相应调整权重和阈值等参数。这个过程,可以理解为婴儿拍打桌子,打偏了,根据偏离的距离远近,来调整身体使得再次挥动的胳膊不断靠近桌子,最终打中。
再举个例子来加深理解:
图一所示BP神经网络,具备输入层、隐含层和输出层。BP是如何通过这三层结构来实现输出层的输出值outputLayer_output,不断逼近给定的y值,从而训练得到一个精准的模型的呢?
从图中串起来的端口,可以想到一个过程:坐地铁,将图一想象为一条地铁线路。王某某坐地铁回家的一天:在input起点站上车,中途经过了很多站(hiddenLayer),然后发现坐过头了(outputLayer对应现在的位置),那么王某某将会根据现在的位置离家(目标Target)的距离(误差Error),返回到中途的地铁站(hiddenLayer)重新坐地铁(误差反向传递,使用梯度下降算法更新w和b),如果王某某又一次发生失误,那么将再次进行这个调整的过程。
从在婴儿拍打桌子和王某某坐地铁的例子中,思考问题:BP的完整训练,需要先传入数据给input,再经过隐含层的映射,输出层得到BP仿真值,根据仿真值与目标值的误差,来调整参数,使得仿真值不断逼近目标值。比如(1)婴儿受到了外界的干扰因素(x),从而作出反应拍桌(predict),大脑不断的调整胳膊位置,控制四肢拍准(y、Target)。(2)王某某上车点(x),过站点(predict),不断返回中途站来调整位置,到家(y、Target)。
在这些环节中,涉及了影响因素数据x,目标值数据y(Target)。根据x,y,使用BP算法来寻求x与y之间存在的规律,实现由x来映射逼近y,这就是BP神经网络算法的作用。再多说一句,上述讲的过程,都是BP模型训练,那么最终得到的模型虽然训练准确,但是找到的规律(bp network)是否准确与可靠呢。于是,我们再给x1到训练好的bp network中,得到相应的BP输出值(预测值)predict1,通过作图,计算Mse,Mape,R方等指标,来对比predict1和y1的接近程度,就可以知道模型是否预测准确。这是BP模型的测试过程,即实现对数据的预测,并且对比实际值检验预测是否准确。
图一 3层BP神经网络结构图
以电力负荷预测问题为例,进行两种模型的区分。在预测某个时间段内的电力负荷时:
一种做法,是考虑 t 时刻的气候因素指标,比如该时刻的空气湿度x1,温度x2,以及节假日x3等的影响,对 t 时刻的负荷值进行预测。这是前面1.1所说的模型。
另一种做法,是认为电力负荷值的变化,与时间相关,比如认为t-1,t-2,t-3时刻的电力负荷值与t时刻的负荷值有关系,即满足公式y(t)=F(y(t-1),y(t-2),y(t-3))。采用BP神经网络进行训练模型时,则输入到神经网络的影响因素值为历史负荷值y(t-1),y(t-2),y(t-3),特别地,3叫做自回归阶数或者延迟。给到神经网络中的目标输出值为y(t)。
function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm_kernel(TrainingData, TestingData, Elm_Type, Regularization_coefficient, Kernel_type, Kernel_para) % Usage: elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction) % OR: [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction) % % Input: % TrainingData_File - Filename of training data set tic; Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P'); TY=(Omega_test' * OutputWeight)'; % TY: the actual output of the testing data TestingTime=toc %%%%%%%%%% Calculate training & testing classification accuracy if Elm_Type == REGRESSION %%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case TrainingAccuracy=sqrt(mse(T - Y)) TestingAccuracy=sqrt(mse(TV.T - TY)) end if Elm_Type == CLASSIFIER %%%%%%%%%% Calculate training & testing classification accuracy MissClassificationRate_Training=0; MissClassificationRate_Testing=0; for i = 1 : size(T, 2) [x, label_index_expected]=max(T(:,i)); [x, label_index_actual]=max(Y(:,i)); if label_index_actual~=label_index_expected MissClassificationRate_Training=MissClassificationRate_Training+1; end end TrainingAccuracy=1-MissClassificationRate_Training/size(T,2) for i = 1 : size(TV.T, 2) [x, label_index_expected]=max(TV.T(:,i)); [x, label_index_actual]=max(TY(:,i)); if label_index_actual~=label_index_expected MissClassificationRate_Testing=MissClassificationRate_Testing+1; end end TestingAccuracy=(1-MissClassificationRate_Testing/size(TV.T,2))*100 end %%%%%%%%%%%%%%%%%% Kernel Matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt) nb_data = size(Xtrain,1); if strcmp(kernel_type,'RBF_kernel'), if nargin<4, XXh = sum(Xtrain.^2,2)*ones(1,nb_data); omega = XXh+XXh'-2*(Xtrain*Xtrain'); omega = exp(-omega./kernel_pars(1)); else XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); XXh2 = sum(Xt.^2,2)*ones(1,nb_data); omega = XXh1+XXh2' - 2*Xtrain*Xt'; omega = exp(-omega./kernel_pars(1)); end elseif strcmp(kernel_type,'lin_kernel') if nargin<4, omega = Xtrain*Xtrain'; else omega = Xtrain*Xt'; end elseif strcmp(kernel_type,'poly_kernel') if nargin<4, omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2); else omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2); end elseif strcmp(kernel_type,'wav_kernel') if nargin<4, XXh = sum(Xtrain.^2,2)*ones(1,nb_data); omega = XXh+XXh'-2*(Xtrain*Xtrain'); XXh1 = sum(Xtrain,2)*ones(1,nb_data); omega1 = XXh1-XXh1'; omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1)); else XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); XXh2 = sum(Xt.^2,2)*ones(1,nb_data); omega = XXh1+XXh2' - 2*(Xtrain*Xt'); XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1)); XXh22 = sum(Xt,2)*ones(1,nb_data); omega1 = XXh11-XXh22'; omega = cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1)); end end
图2哈里斯鹰算法收敛曲线
测试统计如下表所示
测试结果 | 测试集正确率 | 训练集正确率 |
---|---|---|
BP神经网络 | 100% | 95% |
HHO-BP | 100% | 99.8% |
《基于BP神经网络的宁夏水资源需求量预测》