传送门
最近比赛遇到了要用FFT的题,就趁机加强一下。
一句话题意:在\(n\)个数中随便拿出三个数,问能组成三角形的概率。(\(1 \leqslant n \leqslant 10^ 5, 1 \leqslant a_i \leqslant10 ^ 5\))
看到\(a_i\)的限制,就能想到开一个桶\(num[i]\)表示大小为\(i\)的数的个数。
那么\(f = num ^ 2\),\(f(i)\)就表示拿两个数,组成大小为\(i\)的数的方案数。但这里面有不合法的和重复的,所以要将\(f(a_i+a_i)\)减\(1\),以及将所有\(f(i)\)除以\(2\),因为\(a_x+a_y\)和\(a_y+a_x\)是同一种选法。
上述的\(f(i)\)直接用FFT即可计算,接下来考虑怎么组成三角形。
我们可以枚举长边。
那么对于每一个长边\(a_i\),可以和\(\sum\limits_{j>a_i} f(j)\)组成三角形,但这样算会多。
一是可能会有一个比\(a_i\)长的边,一个比\(a_i\)短的边,那么方案数就要减去\((i-1)*(n-i)\).
二是可能一个刚好也选\(a_i\)(注意,是选\(a_i\)本身,而选和\(a_i\)相同的数是合法的,而且两个短边不可能同时选到\(a_i\),因为这种情况再刚求完\(f\)的时候已经去掉了),另一个随便选,因此要再减去\(n-1\).
最后一种就是选了两个都比\(a_i\)大的数,再减去\(C_{n - i}^2\).
总的来说这题难点不在于卷积,而是后面组合数的推导,要不重不漏的考虑到所有情况。
#include<cstdio> #include<iostream> #include<cmath> #include<algorithm> #include<cstring> #include<cstdlib> #include<cctype> #include<vector> #include<queue> #include<assert.h> #include<ctime> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt) typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 3e5 + 5; const db PI = acos(-1); In ll read() { ll ans = 0; char ch = getchar(), las = ' '; while(!isdigit(ch)) las = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(las == '-') ans = -ans; return ans; } In void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } int n, a[maxn]; int len = 1, lim = 0, rev[maxn]; struct Comp { db x, y; In Comp operator + (const Comp& oth)const {return (Comp){x + oth.x, y + oth.y};} In Comp operator - (const Comp& oth)const {return (Comp){x - oth.x, y - oth.y};} In Comp operator * (const Comp& oth)const {return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};} friend In void swap(Comp &a, Comp& b) {swap(a.x, b.x), swap(a.y, b.y);} }A[maxn]; In void fft(Comp* a, int flg) { for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]); for(int i = 1; i < len; i <<= 1) { Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg}; for(int j = 0; j < len; j += (i << 1)) { Comp o = (Comp){1, 0}; for(int k = 0; k < i; ++k, o = o * omg) { Comp tp1 = a[k + j], tp2 = o * a[k + j + i]; a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2; } } } } ll num[maxn], sum[maxn]; In ll solve() { sort(a + 1, a + n + 1); for(int i = 1; i <= n; ++i) num[a[i]]++; int N = a[n] + a[n]; while(len <= N) len <<= 1, ++lim; for(int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1)); for(int i = 0; i <= a[n]; ++i) A[i] = (Comp){num[i], 0}; for(int i = a[n] + 1; i < len; ++i) A[i] = (Comp){0, 0}; fft(A, 1); for(int i = 0; i < len; ++i) A[i] = A[i] * A[i]; fft(A, -1); for(int i = 0; i <= N; ++i) num[i] = A[i].x / len + 0.5; for(int i = 1; i <= n; ++i) num[a[i] + a[i]]--; for(int i = 1; i <= N; ++i) num[i] /= 2, sum[i] = sum[i - 1] + num[i]; ll ret = -1LL * n * (n - 1); for(int i = 1; i <= n; ++i) { ret += sum[N] - sum[a[i]]; ret -= 1LL * (i - 1) * (n - i); ret -= (1LL * (n - i) * (n - i - 1) >> 1); } return ret; } In void init() { Mem(num, 0); len = 1, lim = 0; } int main() { int T = read(); while(T--) { init(); n = read(); for(int i = 1; i <= n; ++i) a[i] = read(); printf("%.7lf\n", 1.0 * solve() / (n - 2) / (n - 1) / n * 6); } return 0; }