传送门
第一眼看貌似可以树剖,然而那个绝对值不知怎么维护
求最小连通块我只会\(k^2\)
主席树貌似可以用来查询区间内与某个数差的绝对值的最小值?
确实,每次查大于等于该数的最小数和小于等于该数的最大数即可
至于具体实现,实际上可以转化为求一个区间内最左/右边的数
很容易写出一个线段树上\(O(nlogn)\)的暴力遍历
但这里用的只要求第一个,可以按顺序找,找到第一个就跳出,单次复杂度\(O(logn)\)
至于查询区间和log划分区间间的问题,到了一个节点,如果它已经不在查询区间中,返回一个标记值即可
至于求连通块的问题:
Code:
#include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f3f #define N 100010 #define ll long long #define ld long double #define usd unsigned #define ull unsigned long long //#define int long long #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++) char buf[1<<21], *p1=buf, *p2=buf; inline int read() { int ans=0, f=1; char c=getchar(); while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();} while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();} return ans*f; } int n, q, typ; int head[N], size, a[N], x[N]; struct edge{int to, next;}e[N<<1]; inline void add(int s, int t) {edge* k=&e[++size]; k->to=t; k->next=head[s]; head[s]=size;} //struct que{int r, k; vector<int> v;}que[N]; namespace force{ bool vis[N]; int dfs(int u, int to, int r, int fa) { if (u==to) return abs(a[u]-r); for (int i=head[u],v,t; i; i=e[i].next) { v = e[i].to; if (v!=fa) { t=dfs(v, to, r, u); if (t!=-1) return min(t, abs(a[u]-r)); } } return -1; } void solve() { for (int i=1,r,k,ans; i<=q; ++i) { ans=INF; r=read(); k=read(); //cout<<r<<' '<<k<<endl; for (int j=1; j<=k; ++j) x[j]=read(); for (int j=1; j<=k; ++j) for (int h=j; h<=k; ++h) ans=min(ans, dfs(x[j], x[h], r, 0)); printf("%d\n", ans); } exit(0); } } namespace force2{ bool vis[N]; int rot; int dfs(int u, int r, int fa) { int ans=INF; if (vis[u]) ans=min(ans, abs(a[u]-r)); for (int i=head[u],v,t; i; i=e[i].next) { v = e[i].to; if (v!=fa) { t=dfs(v, r, u); if (t!=-1) ans=min(ans, min(t, abs(a[u]-r))); if (!ans) return 0; } } return ans==INF?-1:ans; } void solve() { for (int i=1,r,k,ans; i<=q; ++i) { ans=INF; r=read(); k=read(); //cout<<r<<' '<<k<<endl; for (int j=1; j<=k; ++j) x[j]=read(), vis[x[j]]=1; printf("%d\n", dfs(x[1], r, 0)); for (int j=1; j<=k; ++j) vis[x[j]]=0; } exit(0); } } namespace task{ int dep[N], siz[N], msiz[N], mson[N], top[N], id[N], rk[N], fa[N], tot; int rot[N], tot2, r[N*3], k[N*3], uni[N<<3], usize, lst; vector<ll> x[N*3]; struct pst{ int tl, tr, cnt, lson, rson; #define t(p) tree[p] #define tl(p) tree[p].tl #define tr(p) tree[p].tr #define cnt(p) tree[p].cnt #define l(p) tree[p].lson #define r(p) tree[p].rson #define pushup(p) cnt(p)=cnt(l(p))+cnt(r(p)) }tree[N*80]; int upd(int p1, int p2, int l, int r, int pos) { p1=++tot2; t(p1)=t(p2); tl(p1)=l; tr(p1)=r; if (l>=r) {cnt(p1)=cnt(p2)+1; return p1;} int mid=(l+r)>>1; if (pos<=mid) l(p1)=upd(l(p1), l(p2), l, mid, pos); else r(p1)=upd(r(p1), r(p2), mid+1, r, pos); pushup(p1); return p1; } int qleft(int p1, int p2, int l, int r) { //cout<<"qleft "<<p1<<' '<<p2<<' '<<l<<' '<<r<<endl; if (l>tr(p2) || r<tl(p2)) return 0; if (tl(p2)==tr(p2)) {/*cout<<"return "<<cnt(p2)-cnt(p1)<<' '<<tl(p2)<<endl;*/ return (cnt(p2)-cnt(p1))?tl(p2):0;} int mid=(tl(p2)+tr(p2))>>1, ans=INF, t; if (l<=mid && cnt(l(p2))-cnt(l(p1))) {t=qleft(l(p1), l(p2), l, r); ans=min(ans, !t?INF:t);} if (ans!=INF) return ans; if (r>mid && cnt(r(p2))-cnt(r(p1))) {t=qleft(r(p1), r(p2), l, r); ans=min(ans, !t?INF:t);} //puts("error"); return ans==INF?0:ans; } int qright(int p1, int p2, int l, int r) { //cout<<"qright: "<<p1<<' '<<p2<<' '<<l<<' '<<r<<endl; if (l>tr(p2) || r<tl(p2)) return 0; if (tl(p2)==tr(p2)) {/*cout<<"return "<<cnt(p2)-cnt(p1)<<' '<<tl(p2)<<endl;*/ return (cnt(p2)-cnt(p1))?tl(p2):0;} int mid=(tl(p2)+tr(p2))>>1, ans=0, t; if (r>mid && cnt(r(p2))-cnt(r(p1))) {t=qright(r(p1), r(p2), l, r); ans=max(ans, t);} if (ans) return ans; if (l<=mid && cnt(l(p2))-cnt(l(p1))) {t=qright(l(p1), l(p2), l, r); ans=max(ans, t);} //puts("error"); return ans; } void dfs1(int u, int pa) { siz[u]=1; for (int i=head[u],v; i; i=e[i].next) { v = e[i].to; if (v==pa) continue; dep[v]=dep[u]+1; fa[v]=u; dfs1(v, u); siz[u]+=siz[v]; if (siz[v]>msiz[u]) msiz[u]=siz[v], mson[u]=v; } } void dfs2(int u, int f, int t) { top[u]=t; id[u]=++tot; rot[tot]=upd(rot[tot], rot[tot-1], 1, usize, lower_bound(uni+1, uni+usize+1, a[u])-uni); //cout<<"upd: "<<tot<<' '<<u<<' '<<lower_bound(uni+1, uni+usize+1, a[u])-uni<<' '<<uni[lower_bound(uni+1, uni+usize+1, a[u])-uni]<<endl; rk[tot]=u; if (!mson[u]) return ; dfs2(mson[u], u, t); for (int i=head[u],v; i; i=e[i].next) { v = e[i].to; if (v!=f && v!=mson[u]) dfs2(v, u, v); } } int query(int a, int b, int r) { //cout<<"query "<<a<<' '<<b<<' '<<r<<endl; int ans=INF, q1, q2; int rb=lower_bound(uni+1, uni+usize+1, r)-uni; //cout<<"rb: "<<rb<<endl; while (top[a]!=top[b]) { if (dep[top[a]]<dep[top[b]]) swap(a, b); //cout<<"qid: "<<id[top[a]]<<' '<<id[a]<<endl; q1=qleft(rot[id[top[a]]-1], rot[id[a]], rb, usize), q2=qright(rot[id[top[a]]-1], rot[id[a]], 1, rb); //cout<<"q1q2: "<<q1<<' '<<q2<<endl; ans=min(ans, min(q1?(uni[q1]-r):INF, q2?(r-uni[q2]):INF)); if (!ans) return 0; a = fa[top[a]]; } if (dep[a]>dep[b]) swap(a, b); //cout<<"qid: "<<id[a]<<' '<<id[b]<<endl; q1=qleft(rot[id[a]-1], rot[id[b]], rb, usize), q2=qright(rot[id[a]-1], rot[id[b]], 1, rb); //cout<<"q1q2: "<<q1<<' '<<q2<<endl; ans=min(ans, min(q1?(uni[q1]-r):INF, q2?(r-uni[q2]):INF)); return ans; } int lca(int a, int b) { while (top[a]!=top[b]) { if (dep[top[a]]<dep[top[b]]) swap(a, b); a = fa[top[a]]; } if (dep[a]>dep[b]) swap(a, b); return a; } void init() { dep[1]=1; dfs1(1, 0); dfs2(1, 0, 1); } void solve() { for (int i=1; i<=q; ++i) { r[i]=read(); k[i]=read(); uni[++usize]=r[i]; for (int j=1,t; j<=k[i]; ++j) {t=read(); x[i].push_back(t);} } for (int i=1; i<=n; ++i) uni[++usize]=a[i]; //cout<<"usize: "<<usize<<endl; //cout<<"uni: "; for (int i=1; i<=usize; ++i) cout<<uni[i]<<' '; cout<<endl; sort(uni+1, uni+usize+1); usize=unique(uni+1, uni+usize+1)-uni-1; //cout<<"usize: "<<usize<<endl; //cout<<"uni: "; for (int i=1; i<=usize; ++i) cout<<uni[i]<<' '; cout<<endl; init(); for (int i=1,anc,ans; i<=q; ++i) { anc=(x[i][0]-1+lst*typ)%n+1, ans=INF; for (int j=1; j<k[i]&&anc!=1; ++j) anc=lca(anc, (x[i][j]-1+lst*typ)%n+1); //cout<<"anc: "<<anc<<endl; for (int j=0; j<k[i]&&ans; ++j) ans=min(ans, query((x[i][j]-1+lst*typ)%n+1, anc, r[i])); //, cout<<"nowans: "<<ans<<endl; printf("%d\n", ans); lst=ans; } //cout<<qleft(rot[0], rot[3], 1, 5)<<endl; //cout<<qright(rot[1], rot[3], 1, 3)<<endl; } } signed main() { #ifdef DEBUG freopen("1.in", "r", stdin); #endif bool same=1, less1=1, ris1=1, chain=1; n=read(); q=read(); typ=read(); if (!q) return 0; for (int i=1; i<=n; ++i) { a[i]=read(); if (i!=1 && a[i]!=a[i-1]) same=0; } for (int i=1,u,v; i<n; ++i) { u=read(); v=read(); add(u, v); add(v, u); if (v!=u+1) chain=0; } task::solve(); #if 0 if (n<=1000) force2::solve(); for (int i=1,r,k; i<=q; ++i) { r=read(); k=read(); for (int j=1; j<=k; ++j) x[j]=read(), force2::vis[x[j]]=1; if (!k) continue; else if (k==1 || same) printf("%d\n", abs(a[x[1]]-r)); else printf("%d\n", force2::dfs(x[1], r, 0)); for (int j=1; j<=k; ++j) force2::vis[x[j]]=0; //else if (r==1) printf("%d\n", task2::qmin(1, } #endif return 0; }