空间复杂度:O(1)
时间复杂度:
Best case:have sorted => O(n)
Worset case:reverse sorted => O(n^2)
Average case:O(n^2)
#include <iostream> using namespace std; void insertionsort(int a[], int n) { int i, j; for (i = 2; i <= n; i++) { if (a[i] < a[i - 1]) { a[0] = a[i]; for (j = i - 1; a[j] > a[0]; --j) { a[j + 1] = a[j]; } a[j + 1] = a[0]; } } } int main() { int i, a[100], n; scanf_s("%d", &n); for (i = 1; i <= n; i++) { cin >> a[i]; } insertionsort(&a[0], n); for (i = 1; i <= n; i++) { cout << a[i]; } return 0; }
该算法为带哨兵版本,即空出数组a[0]位作为哨兵存储key值,
从而避免每次内循环需判断j>=0的问题
(该版本提升不明显,没必要使用)
出现的错误:调用函数时写成&a[0]。应注意&a[0]与&a[100]的区别
2.归并排序
核心操作:把数组内两个有序数列归并为一个(也可能为两个独立数字归并)
例:A[low ... mid] 与 A[mid + 1... high] 归并
/**** 把多个已经有序的数列合并成一个 核心:二路归并 ****/ #include <iostream> using namespace std; int n; void Merge(int A[], int low, int mid, int high) { int i, j, k; int *B = new(int [n]); //辅助数组 for (k = low; k <= high; k++) { B[k] = A[k]; //将A复制到B } for (i = low, j = mid + 1, k = i; i <= mid && j <= high; k++) //归并 { if (B[i] <= B[j]) A[k] = B[i++]; else A[k] = B[j++]; } while (i <= mid) A[k++] = B[i++]; while (j <= high) A[k++] = B[j++]; //仅剩一个数列时,直接复制下来 delete[] B; } void Mergesort(int A[], int low, int high) { if (low < high) { int mid = (low + high) / 2; Mergesort(A, low, mid); Mergesort(A, mid + 1, high); Merge(A, low, mid, high); } } //Mergesort可对一个无序数列进行归并排序,利用递归拆分为两两归并 int main() { int A[100], i, low = 0, mid = 2, high = 5; cin >> n; for (i = 0; i < n; i++) { cin >> A[i]; } Mergesort(&A[0], low, high); for (i = 0; i < n; i++) { cout << A[i] << endl; } return 0; }