分析:一个用消息队列的人,不知道为啥用,有点尴尬。没有复习这点,很容易被问蒙,然后就开始胡扯了。
回答:这个问题,咱只答三个最主要的应用场景(不可否认还有其他的,但是只答三个主要的),即以下六个字:解耦、异步、削峰
传统模式:
传统模式的缺点:
中间件模式:
中间件模式的的优点:
传统模式:
传统模式的缺点:
中间件模式:
中间件模式的的优点:
传统模式
传统模式的缺点:
中间件模式:
中间件模式的的优点:
分析:一个使用了MQ的项目,如果连这个问题都没有考虑过,就把MQ引进去了,那就给自己的项目带来了风险。
我们引入一个技术,要对这个技术的弊端有充分的认识,才能做好预防。要记住,不要给公司挖坑!
回答:回答也很容易,从以下两个个角度来答
系统可用性降低:
你想啊,本来其他系统只要运行好好的,那你的系统就是正常的。
现在你非要加个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性降低
系统复杂性增加:
要多考虑很多方面的问题,比如一致性问题、如何保证消息不被重复消费,如何保证保证消息可靠传输。
因此,需要考虑的东西更多,系统复杂性增大。
但是,我们该用还是要用的。
先说一下,博主只会ActiveMQ,RabbitMQ,RocketMQ,Kafka,对什么ZeroMQ等其他MQ没啥理解,因此只能基于这四种MQ给出回答。
分析:既然在项目中用了MQ,肯定事先要对业界流行的MQ进行调研,如果连每种MQ的优缺点都没了解清楚,就拍脑袋依据喜好,用了某种MQ,还是给项目挖坑。
如果面试官问:"你为什么用这种MQ?。"你直接回答"领导决定的。"这种回答就很LOW了。
还是那句话,不要给公司挖坑。
我们可以看出,RabbitMQ版本发布比ActiveMq频繁很多。至于RocketMQ和kafka就不带大家看了,总之也比ActiveMQ活跃的多。详情,可自行查阅。
再来一个性能对比表
综合上面的材料得出以下两点:
(1)中小型软件公司,建议选RabbitMQ.
一方面,erlang语言天生具备高并发的特性,而且他的管理界面用起来十分方便。
正所谓,成也萧何,败也萧何!他的弊端也在这里,虽然RabbitMQ是开源的,然而国内有几个能定制化开发erlang的程序员呢?
所幸,RabbitMQ的社区十分活跃,可以解决开发过程中遇到的bug,这点对于中小型公司来说十分重要。
不考虑rocketmq和kafka的原因是,一方面中小型软件公司不如互联网公司,数据量没那么大,选消息中间件,应首选功能比较完备的,所以kafka排除。
不考虑rocketmq的原因是,rocketmq是阿里出品,如果阿里放弃维护rocketmq,中小型公司一般抽不出人来进行rocketmq的定制化开发,因此不推荐。
(2)大型软件公司,根据具体使用在rocketMq和kafka之间二选一
一方面,大型软件公司,具备足够的资金搭建分布式环境,也具备足够大的数据量。
针对rocketMQ,大型软件公司也可以抽出人手对rocketMQ进行定制化开发,毕竟国内有能力改JAVA源码的人,还是相当多的。
至于kafka,根据业务场景选择,如果有日志采集功能,肯定是首选kafka了。具体该选哪个,看使用场景。
分析:在第二点说过了,引入消息队列后,系统的可用性下降。在生产中,没人使用单机模式的消息队列。
因此,作为一个合格的程序员,应该对消息队列的高可用有很深刻的了解。
如果面试的时候,面试官问,你们的消息中间件如何保证高可用的?
如果你的回答只是表明自己只会订阅和发布消息,面试官就会怀疑你是不是只是自己搭着玩,压根没在生产用过。
因此,请做一个爱思考,会思考,懂思考的程序员。
回答:这问题,其实要对消息队列的集群模式要有深刻了解,才好回答。
以rcoketMQ为例,他的集群就有多master 模式、多master多slave异步复制模式、多 master多slave同步双写模式。
多master多slave模式部署架构图(网上找的,偷个懒,懒得画):
其实博主第一眼看到这个图,就觉得和kafka好像,只是NameServer集群,在kafka中是用zookeeper代替,都是用来保存和发现master和slave用的。
通信过程如下:
Producer 与 NameServer集群中的其中一个节点(随机选择)建立长连接,定期从 NameServer 获取 Topic 路由信息,并向提供 Topic 服务的 Broker Master 建立长连接,且定时向 Broker 发送心跳。
Producer 只能将消息发送到 Broker master,但是 Consumer 则不一样,它同时和提供 Topic 服务的 Master 和 Slave建立长连接,既可以从 Broker Master 订阅消息,也可以从 Broker Slave 订阅消息。
那么kafka呢,为了对比说明直接上kafka的拓补架构图(也是找的,懒得画)
如上图所示,一个典型的Kafka集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。
Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。
Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。
至于rabbitMQ,也有普通集群和镜像集群模式,自行去了解,比较简单,两小时即懂。
要求,在回答高可用的问题时,应该能逻辑清晰的画出自己的MQ集群架构或清晰的叙述出来。
分析:这个问题其实换一种问法就是,如何保证消息队列的幂等性?
这个问题可以认为是消息队列领域的基本问题。换句话来说,是在考察你的设计能力,这个问题的回答可以根据具体的业务场景来答,没有固定的答案。
回答:先来说一下为什么会造成重复消费?
其实无论是那种消息队列,造成重复消费原因其实都是类似的。
正常情况下,消费者在消费消息时候,消费完毕后,会发送一个确认信息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除。只是不同的消息队列发送的确认信息形式不同
例如RabbitMQ是发送一个ACK确认消息,RocketMQ是返回一个CONSUME_SUCCESS成功标志,kafka实际上有个offset的概念
简单说一下(如果还不懂,出门找一个kafka入门到精通教程),就是每一个消息都有一个offset,kafka消费过消息后,需要提交offset,让消息队列知道自己已经消费过了。
那造成重复消费的原因?
就是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将该消息分发给其他的消费者。
如何解决?这个问题针对业务场景来答分以下几点
(1)比如,你拿到这个消息做数据库的insert操作。
那就容易了,给这个消息做一个唯一主键,那么就算出现重复消费的情况,就会导致主键冲突,避免数据库出现脏数据。
(2)再比如,你拿到这个消息做redis的set的操作
那就容易了,不用解决。因为你无论set几次结果都是一样的,set操作本来就算幂等操作。
(3)如果上面两种情况还不行,上大招。
准备一个第三方介质,来做消费记录。以redis为例,给消息分配一个全局id,只要消费过该消息,将以K-V形式写入redis。那消费者开始消费前,先去redis中查询有没消费记录即可。
分析:我们在使用消息队列的过程中,应该做到消息不能多消费,也不能少消费。如果无法做到可靠性传输,可能给公司带来千万级别的财产损失。
同样的,如果可靠性传输在使用过程中,没有考虑到,这不是给公司挖坑么,你可以拍拍屁股走了,公司损失的钱,谁承担。
还是那句话,认真对待每一个项目,不要给公司挖坑
回答:其实这个可靠性传输,每种MQ都要从三个角度来分析:生产者弄丢数据、消息队列弄丢数据、消费者弄丢数据
(1)生产者丢数据
从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息。
transaction机制就是说,发送消息前,开启事物(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事物就会回滚(channel.txRollback()),如果发送成功则提交事物(channel.txCommit())。
然而缺点就是吞吐量下降了。因此,按照博主的经验,生产上用confirm模式的居多。
一旦channel进入confirm模式,所有在该信道上面发布的消息都将会被指派一个唯一的ID(从1开始)
一旦消息被投递到所有匹配的队列之后,rabbitMQ就会发送一个Ack给生产者(包含消息的唯一ID)
这就使得生产者知道消息已经正确到达目的队列了.如果rabiitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。
处理Ack和Nack的代码如下所示(说好不上代码的,偷偷上了):
channel.addConfirmListener(new ConfirmListener() { @Override public void handleNack(long deliveryTag, boolean multiple) throws IOException { System.out.println("nack: deliveryTag = "+deliveryTag+" multiple: "+multiple); } @Override public void handleAck(long deliveryTag, boolean multiple) throws IOException { System.out.println("ack: deliveryTag = "+deliveryTag+" multiple: "+multiple); } });
(2)消息队列丢数据
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。
这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。
这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。
那么如何持久化呢,这里顺便说一下吧,其实也很容易,就下面两步
1、将queue的持久化标识durable设置为true,则代表是一个持久的队列
2、发送消息的时候将deliveryMode=2
这样设置以后,rabbitMQ就算挂了,重启后也能恢复数据
(3)消费者丢数据
消费者丢数据一般是因为采用了自动确认消息模式。
这种模式下,消费者会自动确认收到信息。这时rahbitMQ会立即将消息删除,这种情况下如果消费者出现异常而没能处理该消息,就会丢失该消息。
至于解决方案,采用手动确认消息即可。
Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader
然后无论该Topic的Replication Factor为多少(也即该Partition有多少个Replica),Producer只将该消息发送到该Partition的Leader。
Leader会将该消息写入其本地Log。每个Follower都从Leader中pull数据。
针对上述情况,得出如下分析
(1)生产者丢数据
在kafka生产中,基本都有一个leader和多个follwer。follwer会去同步leader的信息。
因此,为了避免生产者丢数据,做如下两点配置
第一个配置要在producer端设置acks=all。这个配置保证了,follwer同步完成后,才认为消息发送成功。
在producer端设置retries=MAX,一旦写入失败,这无限重试
(2)消息队列丢数据
针对消息队列丢数据的情况,无外乎就是,数据还没同步,leader就挂了,这时zookpeer会将其他的follwer切换为leader,那数据就丢失了。
针对这种情况,应该做两个配置。
replication.factor参数,这个值必须大于1,即要求每个partition必须有至少2个副本
min.insync.replicas参数,这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系
这两个配置加上上面生产者的配置联合起来用,基本可确保kafka不丢数据
(3)消费者丢数据
这种情况一般是自动提交了offset,然后你处理程序过程中挂了。kafka以为你处理好了。
再强调一次offset是干嘛的
offset:指的是kafka的topic中的每个消费组消费的下标。
简单的来说就是一条消息对应一个offset下标,每次消费数据的时候如果提交offset,那么下次消费就会从提交的offset加一那里开始消费。
比如一个topic中有100条数据,我消费了50条并且提交了,那么此时的kafka服务端记录提交的offset就是49(offset从0开始),那么下次消费的时候offset就从50开始消费。
解决方案也很简单,改成手动提交即可。
大家自行查阅吧
分析:其实并非所有的公司都有这种业务需求,但是还是对这个问题要有所复习。
回答:针对这个问题,通过某种算法,将需要保持先后顺序的消息放到同一个消息队列中(kafka中就是partition,rabbitMq中就是queue)。然后只用一个消费者去消费该队列。
有的人会问:那如果为了吞吐量,有多个消费者去消费怎么办?
这个问题,没有固定回答的套路。比如我们有一个微博的操作,发微博、写评论、删除微博,这三个异步操作。如果是这样一个业务场景,那只要重试就行。
比如你一个消费者先执行了写评论的操作,但是这时候,微博都还没发,写评论一定是失败的,等一段时间。等另一个消费者,先执行写评论的操作后,再执行,就可以成功。
总之,针对这个问题,我的观点是保证入队有序就行,出队以后的顺序交给消费者自己去保证,没有固定套路。
在开头跟大家分享的时候我就说,面试我是没有做好准备的,全靠平时的积累,确实有点临时抱佛脚了,以至于我自己还是挺懊恼的。(准备好了或许可以拿个40k,没做准备只有30k+,你们懂那种感觉吗)
如何准备面试?
1、前期铺垫(技术沉积)
程序员面试其实是对于技术的一次摸底考试,你的技术牛逼,那你就是大爷。大厂对于技术的要求主要体现在:基础,原理,深入研究源码,广度,实战五个方面,也只有将原理理论结合实战才能把技术点吃透。
下面是我会看的一些资料笔记,希望能帮助大家由浅入深,由点到面的学习Java,应对大厂面试官的灵魂追问,有需要的话就戳这里:蓝色传送门打包带走吧。
这部分内容过多,小编只贴出部分内容展示给大家了,见谅见谅!
四部分,详细拆分并发编程——并发编程+模式篇+应用篇+原理篇
其他像Spring,SpringBoot,SpringCloud,SpringCloudAlibaba,Dubbo,Zookeeper,Kafka,RocketMQ,RabbitMQ,Netty,MySQL,Docker,K8s等等我都整理好,这里就不一一展示了。
2、狂刷面试题
技术主要是体现在平时的积累实用,面试前准备两个月的时间再好好复习一遍,紧接着就可以刷面试题了,下面这些面试题都是小编精心整理的,贴给大家看看。
①大厂高频45道笔试题(智商题)
②BAT大厂面试总结(部分内容截图)
③面试总结
3、结合实际,修改简历
程序员的简历一定要多下一些功夫,尤其是对一些字眼要再三斟酌,如“精通、熟悉、了解”这三者的区别一定要区分清楚,否则就是在给自己挖坑了。当然不会包装,我可以将我的简历给你参考参考,如果还不够,那下面这些简历模板任你挑选:
以上分享,希望大家可以在金三银四跳槽季找到一份好工作,但千万也记住,技术一定是平时工作种累计或者自学(或报班跟着老师学)通过实战累计的,千万不要临时抱佛脚。
另外,面试中遇到不会的问题不妨尝试讲讲自己的思路,因为有些问题不是考察我们的编程能力,而是逻辑思维表达能力;最后平时要进行自我分析与评价,做好职业规划,不断摸索,提高自己的编程能力和抽象思维能力。
图片转存中…(img-NnjjSPH1-1626691876243)]
3、结合实际,修改简历
程序员的简历一定要多下一些功夫,尤其是对一些字眼要再三斟酌,如“精通、熟悉、了解”这三者的区别一定要区分清楚,否则就是在给自己挖坑了。当然不会包装,我可以将我的简历给你参考参考,如果还不够,那下面这些简历模板任你挑选:
[外链图片转存中…(img-vRFcHhDp-1626691876244)]
以上分享,希望大家可以在金三银四跳槽季找到一份好工作,但千万也记住,技术一定是平时工作种累计或者自学(或报班跟着老师学)通过实战累计的,千万不要临时抱佛脚。
另外,面试中遇到不会的问题不妨尝试讲讲自己的思路,因为有些问题不是考察我们的编程能力,而是逻辑思维表达能力;最后平时要进行自我分析与评价,做好职业规划,不断摸索,提高自己的编程能力和抽象思维能力。
以上文章中,提及到的所有的笔记内容、面试题等资料,均可以免费分享给大家学习,有需要的话就戳这里打包带走吧。