Java教程

sql常见开窗函数示例

本文主要是介绍sql常见开窗函数示例,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1、开窗函数基本语法:

  函数名()over(partition by 分区字段 order by 排序字段)

2.1、示例数据:

2.2、示例sql:

create table kchs(
ID int,
product varchar(50),
amount decimal(18,2)
)

insert into kchs values (1,'苹果',100);
insert into kchs values (2,'苹果',200);
insert into kchs values (3,'苹果',300);
insert into kchs values (4,'香蕉',450);
insert into kchs values (5,'香蕉',550);
insert into kchs values (6,'香蕉',650);
insert into kchs values (7,'西瓜',750);
insert into kchs values (8,'西瓜',850);
insert into kchs values (9,'西瓜',950);
insert into kchs values (10,'西瓜',950);
insert into kchs values (11,'西瓜',1050);

-- sum开窗,用于累计求和
select *,sum(amount)over(partition by product order by id) as sum_over from kchs order by id;

-- count开窗,用于统计当前分区当前行及以前行的纪录数
select *,count(*)over(partition by product order by id) as count_over from kchs order by id;

-- max开窗,用于统计当前分区当前行及以前行的最大值
select *,max(amount)over(partition by product order by id) as max_over from kchs order by id;

-- min开窗,用于统计当前分区当前行及以前行的最小值
select *,min(amount)over(partition by product order by id) as min_over from kchs order by id;

-- avg开窗,用于统计当前分区当前行及以前行的平均数
select *,avg(amount)over(partition by product order by id) as avg_over from kchs order by id;

-- lag开窗,用于获取往前偏移N行的数据
select *,lag(amount,1,null)over(partition by product order by id) as lag_over from kchs order by id;

-- lead开窗,用于获取往后偏移N行的数据
select *,lead(amount,1,null)over(partition by product order by id) as lead_over from kchs order by id;

-- rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名不连续,比如并列第三名有两个,那么就不会有第四名
select *,rank()over(partition by product order by amount) as rk from kchs order by id;

-- dense_rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名连续,比如并列第三名有两个,那么仍然会有第四名
select *,dense_rank()over(partition by product order by amount) as drk from kchs order by id;

-- row_number开窗,用于计算当前分区按排序规则的排序,不会并列排序
select *,row_number()over(partition by product order by amount) as rn from kchs order by id;
View Code

3.1、sum开窗:

-- sum开窗,用于累计求和
select *,sum(amount)over(partition by product order by id) as sum_over from kchs order by id;

3.2、count开窗:

-- count开窗,用于统计当前分区当前行及以前行的纪录数
select *,count(*)over(partition by product order by id) as count_over from kchs order by id;

 3.3、max开窗:

-- max开窗,用于统计当前分区当前行及以前行的最大值
select *,max(amount)over(partition by product order by id) as max_over from kchs order by id;

 3.4、min开窗:

-- min开窗,用于统计当前分区当前行及以前行的最小值
select *,min(amount)over(partition by product order by id) as min_over from kchs order by id;

 3.5、avg开窗:

-- avg开窗,用于统计当前分区当前行及以前行的平均数
select *,avg(amount)over(partition by product order by id) as avg_over from kchs order by id;

 3.6、lag开窗:

-- lag开窗,用于获取往前偏移N行的数据
select *,lag(amount,1,null)over(partition by product order by id) as lag_over from kchs order by id;

 3.7、lead开窗:

-- lead开窗,用于获取往后偏移N行的数据
select *,lead(amount,1,null)over(partition by product order by id) as lead_over from kchs order by id;

3.8、rank开窗:

-- rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名不连续,比如并列第三名有两个,那么就不会有第四名
select *,rank()over(partition by product order by amount) as rk from kchs order by id;

 3.9、dense_rank开窗:

-- dense_rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名连续,比如并列第三名有两个,那么仍然会有第四名
select *,dense_rank()over(partition by product order by amount) as drk from kchs order by id;

3.10、row_number开窗:

-- row_number开窗,用于计算当前分区按排序规则的排序,不会并列排序
select *,row_number()over(partition by product order by amount) as rn from kchs order by id;

这篇关于sql常见开窗函数示例的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!