1、开窗函数基本语法:
函数名()over(partition by 分区字段 order by 排序字段)
2.1、示例数据:
2.2、示例sql:
create table kchs( ID int, product varchar(50), amount decimal(18,2) ) insert into kchs values (1,'苹果',100); insert into kchs values (2,'苹果',200); insert into kchs values (3,'苹果',300); insert into kchs values (4,'香蕉',450); insert into kchs values (5,'香蕉',550); insert into kchs values (6,'香蕉',650); insert into kchs values (7,'西瓜',750); insert into kchs values (8,'西瓜',850); insert into kchs values (9,'西瓜',950); insert into kchs values (10,'西瓜',950); insert into kchs values (11,'西瓜',1050); -- sum开窗,用于累计求和 select *,sum(amount)over(partition by product order by id) as sum_over from kchs order by id; -- count开窗,用于统计当前分区当前行及以前行的纪录数 select *,count(*)over(partition by product order by id) as count_over from kchs order by id; -- max开窗,用于统计当前分区当前行及以前行的最大值 select *,max(amount)over(partition by product order by id) as max_over from kchs order by id; -- min开窗,用于统计当前分区当前行及以前行的最小值 select *,min(amount)over(partition by product order by id) as min_over from kchs order by id; -- avg开窗,用于统计当前分区当前行及以前行的平均数 select *,avg(amount)over(partition by product order by id) as avg_over from kchs order by id; -- lag开窗,用于获取往前偏移N行的数据 select *,lag(amount,1,null)over(partition by product order by id) as lag_over from kchs order by id; -- lead开窗,用于获取往后偏移N行的数据 select *,lead(amount,1,null)over(partition by product order by id) as lead_over from kchs order by id; -- rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名不连续,比如并列第三名有两个,那么就不会有第四名 select *,rank()over(partition by product order by amount) as rk from kchs order by id; -- dense_rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名连续,比如并列第三名有两个,那么仍然会有第四名 select *,dense_rank()over(partition by product order by amount) as drk from kchs order by id; -- row_number开窗,用于计算当前分区按排序规则的排序,不会并列排序 select *,row_number()over(partition by product order by amount) as rn from kchs order by id;View Code
3.1、sum开窗:
-- sum开窗,用于累计求和 select *,sum(amount)over(partition by product order by id) as sum_over from kchs order by id;
3.2、count开窗:
-- count开窗,用于统计当前分区当前行及以前行的纪录数 select *,count(*)over(partition by product order by id) as count_over from kchs order by id;
3.3、max开窗:
-- max开窗,用于统计当前分区当前行及以前行的最大值 select *,max(amount)over(partition by product order by id) as max_over from kchs order by id;
3.4、min开窗:
-- min开窗,用于统计当前分区当前行及以前行的最小值 select *,min(amount)over(partition by product order by id) as min_over from kchs order by id;
3.5、avg开窗:
-- avg开窗,用于统计当前分区当前行及以前行的平均数 select *,avg(amount)over(partition by product order by id) as avg_over from kchs order by id;
3.6、lag开窗:
-- lag开窗,用于获取往前偏移N行的数据 select *,lag(amount,1,null)over(partition by product order by id) as lag_over from kchs order by id;
3.7、lead开窗:
-- lead开窗,用于获取往后偏移N行的数据 select *,lead(amount,1,null)over(partition by product order by id) as lead_over from kchs order by id;
3.8、rank开窗:
-- rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名不连续,比如并列第三名有两个,那么就不会有第四名 select *,rank()over(partition by product order by amount) as rk from kchs order by id;
3.9、dense_rank开窗:
-- dense_rank开窗,用于计算当前分区按排序规则的排名,会并列排名,排名连续,比如并列第三名有两个,那么仍然会有第四名 select *,dense_rank()over(partition by product order by amount) as drk from kchs order by id;
3.10、row_number开窗:
-- row_number开窗,用于计算当前分区按排序规则的排序,不会并列排序 select *,row_number()over(partition by product order by amount) as rn from kchs order by id;