洛谷
在 \([l,r]\) 中找到二进制中零数大于等于一数的数的个数。
数位 DP 板子题。设 \(f_{len,A,B,pos}\) 表示当前 \(len\) 位 \(A\) 个零、\(B\) 个一,碰没碰顶的方案数。
const int N = 60; inline ll Read() { ll x = 0, f = 1; char c = getchar(); while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') f = -f, c = getchar(); while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar(); return x * f; } ll l, r; int a[N], Len; ll f[N][N][N][2]; ll DP (int len, int A, int B, bool pos) { if (~f[len][A][B][pos]) return f[len][A][B][pos]; if (!len) return A >= B; int m = pos? a[len]: 1; ll ans = 0; for (int i = 0; i <= m; i++) ans += DP(len - 1, (B > 0) * (A + (i == 0)), B + (i == 1), pos && i == m); return f[len][A][B][pos] = ans; } ll Solve (ll n) { if (!n) return 1; Len = 0; memset (a, 0, sizeof a); for (ll m = n; m; m /= 2) a[++Len] = m % 2; ll ans = 0; for (int i = 0; i <= a[Len]; i++) ans += DP(Len - 1, 0, i == 1, i == a[Len]); return ans; } int main() { l = Read(), r = Read(); memset (f, -1, sizeof f); printf ("%lld\n", Solve(r) - Solve(l - 1)); return 0; }