ZooKeeper 很流行,有个基本的疑问:
OK,解答一下上面的疑问:(下面是凭直觉说的)
上面说这么多,总结一下,ZK 能解决分布式应用开发的问题,ZK 能很好的解决问题。到这一步,疑问就更多了:
Note:本篇 wiki 就是为了解决上述第一个疑问的。(其他疑问会在其他 blog 中逐步解答)
一个应用程序,涉及多个进程协作时,业务逻辑代码中混杂有大量复杂的进程协作逻辑。
上述多进程协作逻辑,有 2 个特点:
因此,考虑将多进程协作的共性问题拎出,作为基础设施,让 RD 更加专注业务逻辑开发,即:
ZooKeeper 就是上述多进程协作基础服务的一种。
ZooKeeper 有几个简单特点:
ZooKeeper 是存储设施,但特别注意
协作数据
(元数据
),而不是应用数据,应用数据有自己的存储方案,例如 HDFS 等特殊的 FS
特别说明:
应用数据和元数据,由于使用场景不同,对一致性和持久性的要求有差异, 因此,架构设计、数据治理过程中,应将 2 类数据独立看待、独立存储。
ZK 要解决的核心问题:
ZK 目标:简化分布式应用开发中,多进程协作问题。为分布式应用,提供高效
、可靠
的分布式协调服务(基础服务),例如:
一个简单的问题:多进程的协作是什么?尼玛呀,有完没完,啥问题你都有,面对这个掉咋天的脑壳,还是回答一下。
多进程协作,整体分为 2 类:
特别说明:
跨网络多进程协作
,进程通信,基本思路有 2 个:
共享存储
提供有序访问,ZK 采用这种方式真实系统中,跨网络通信,有几个共性问题:
ZK 精心设计用于屏蔽上述 3 个共性问题,使得这些问题在应用服务层面完全透明化。
分布式系统的一致性问题:
在这种情况下,如何保证数据的一致性?
优先级最高的节点
(包含最新数据的节点)Paxos 目标:解决分布式一致性
问题,提高分布式系统容错性
的一致性算法。
Paxos 本质:基于消息传递
的高度容错
的一致性算法
ZooKeeper 是:
业务逻辑开发
,而不需要过多关注分布式进程间协作细节
ZooKeeper 不直接暴露原语
,而是,暴露一部分调用方法
组成的 API,类似文件系统的 API,支持应用程序实现自己的原语
。
ZooKeeper 可以保证如下分布式一致性特性:
ZooKeeper 致力于提供高性能
、高可用
、顺序一致性
的分布式协调服务,保证数据最终一致性
。
树形结构
组织数据节点;ZK 出现之前,分布式系统常用两种方式,实现多进程协作:
ZK 更专注于进程协作,而不提供任何锁接口和通用的存储数据接口。(疑问:ZK 也可以提供啊,我们不使用就行了)
应用服务器,常见的 2 种需求:
ZK 为上述 2 种策略提供了基础 API。
ZooKeeper 不适用的场景:
特殊的 FS
,但 ZK 用于存储元数据
,需要单独存储应用数据
面试难免让人焦虑不安。经历过的人都懂的。但是如果你提前预测面试官要问你的问题并想出得体的回答方式,就会容易很多。
此外,都说“面试造火箭,工作拧螺丝”,那对于准备面试的朋友,你只需懂一个字:刷!
给我刷刷刷刷,使劲儿刷刷刷刷刷!今天既是来谈面试的,那就必须得来整点面试真题,这不花了我整28天,做了份“Java一线大厂高岗面试题解析合集:JAVA基础-中级-高级面试+SSM框架+分布式+性能调优+微服务+并发编程+网络+设计模式+数据结构与算法等”
资料领取方式:点击这里免费下载
且除了单纯的刷题,也得需准备一本【JAVA进阶核心知识手册】:JVM、JAVA集合、JAVA多线程并发、JAVA基础、Spring 原理、微服务、Netty与RPC、网络、日志、Zookeeper、Kafka、RabbitMQ、Hbase、MongoDB、Cassandra、设计模式、负载均衡、数据库、一致性算法、JAVA算法、数据结构、加密算法、分布式缓存、Hadoop、Spark、Storm、YARN、机器学习、云计算,用来查漏补缺最好不过。
:JVM、JAVA集合、JAVA多线程并发、JAVA基础、Spring 原理、微服务、Netty与RPC、网络、日志、Zookeeper、Kafka、RabbitMQ、Hbase、MongoDB、Cassandra、设计模式、负载均衡、数据库、一致性算法、JAVA算法、数据结构、加密算法、分布式缓存、Hadoop、Spark、Storm、YARN、机器学习、云计算,用来查漏补缺最好不过。