【问题描述】
二叉树是一种非常重要的数据结构,非常多其他数据结构都是基于二叉树的基础演变而来的。对于二叉树,深度遍历有前序、中序以及后序三种遍历方法。
三种基本的遍历思想为:
前序遍历:根结点 ---> 左子树 ---> 右子树
中序遍历:左子树---> 根结点 ---> 右子树
后序遍历:左子树 ---> 右子树 ---> 根结点
比如,求以下二叉树的各种遍历
前序遍历:1 2 4 5 7 8 3 6
中序遍历:4 2 7 5 8 1 3 6
后序遍历:4 7 8 5 2 6 3 1
需要你编写程序解决的问题是:已知一个二叉树的前序遍历和中序遍历的结果,给出该二叉树的后序遍历的结果。
【输入形式】
有多组测试数据,每组测试数据三行,每组测试数据第一行只有一个正整数n,表示二叉树节点的数目,n=0意味着输入结束并且不需要处理。
每组测试数据第二行是二叉树的前序遍历的结果,是一个长度为n的字符串,每个节点由一个字符表示,字符是大小写英文字母及10个数字,不同的节点用不同的字符表示,也即无论前序遍历和中序遍历的字符串中没有重复的字符。
每组测试数据第二行是二叉树的中序遍历的结果,也是一个长度为n的字符串。
40%的测试数据1 ≤ n≤ 10;
30%的测试数据1 ≤ n≤ 20;
20%的测试数据1 ≤ n≤ 40;
10%的测试数据1 ≤ n≤ 62;
【输出形式】
对于每组测试数据,输出一行,是一个长度为n的字符串,表示二叉树后序遍历的结果。
【样例输入】
8 12457836 42758136 4 abcd abcd 4 abcd dcba 0
【样例输出】
47852631 dcba dcba
#include <iostream>//递归解决 #include <vector> using namespace std; void func(string pre, string in, int prestart, int instart, int inend) { //pre:前序遍历序列,in:中序遍历序列,prestart:前序遍历当前位置下标,instart:中序遍历当前位置下标,inend:中序遍历结束位置下标 if(instart >= inend) { //若开始位置已经是结束位置,则跳过 return; } int index;//该变量是前序遍历的第一个元素(即顶点)在中序遍历的位置下标 for(index=instart; index<inend; index++) { //开始查找顶点在中序遍历的所在位置,找到后循环停止,index的值即为所在位置下标 if(in[index] == pre[prestart]) break;//找到后循环停止 } func(pre, in, prestart+1, instart, index);//对左子树重复上述操作,直到收敛(即每个递归程的树中只剩一个元素) func(pre, in, prestart+ 1 + index - instart, index+1, inend);//对右子树重复上述操作,直到收敛,index - instart即是左子树的元素个数,所以要加上 cout<<in[index];//要输出后序遍历序列,在递归中把这行放在递归代码的后面即可,学术证明不想看了,直接硬记 } int main() { int n; string a,b; while(cin>>n && n) { //获取n并保证n不为0 cin>>a>>b;//a存储前序遍历序列,b存储中序遍历序列 func(a, b, 0, 0, n);//开始递归,查找后序遍历序列 cout<<endl; } return 0; }