本文主要是介绍实验四 python综合 实验报告,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
爬虫项目
爬取豆瓣评分电影Top250的爬虫
爬取的就是这个网站:https://movie.douban.com/top250
爬取的内容是:电影详情链接,图片链接,影片中文名,影片外国名,评分,评价数,概况,相关信息。
大体流程分三步走:
1. 爬取网页
2.逐一解析数据
3. 保存网页
先分析流程1,爬取网页,baseurl 就是我们要爬虫的网页网址,往下走,调用了 getData(baseurl) ,
我们来看 getData方法
for i in range(0, 10): # 调用获取页面信息的函数,10次
url = baseurl + str(i * 25)
这段大家可能看不懂,其实是这样的:
因为电影评分Top250,每个页面只显示25个,所以我们需要访问页面10次,25*10=250。
baseurl = "https://movie.douban.com/top250?start="
我们只要在baseurl后面加上数字就会跳到相应页面,比如i=1时
然后又调用了askURL来请求网页,这个方法是请求网页的主体方法
def askURL(url):
head = { # 模拟浏览器头部信息,向豆瓣服务器发送消息
"User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122 Safari / 537.36"
}
# 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)
request = urllib.request.Request(url, headers=head)
html = ""
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8")
except urllib.error.URLError as e:
if hasattr(e, "code"):
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
逐一解析数据
解析数据这里我们用到了 BeautifulSoup(靓汤) 这个库,这个库是几乎是做爬虫必备的库,无论你是什么写法。
下面就开始查找符合我们要求的数据,用BeautifulSoup的方法以及 re 库的
正则表达式去匹配,
findLink = re.compile(r'<a href="(.*?)">') # 创建正则表达式对象,标售规则 影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)
匹配到符合我们要求的数据,然后存进 dataList , 所以 dataList 里就存放着我们需要的数据了。
保存数据
保存数据可以选择保存到 xls 表, 需要(xlwt库支持)
保存到 xls 的主体方法是 saveData
def saveData(datalist,savepath):
print("save.......")
book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
for i in range(0,8):
sheet.write(0,i,col[i]) #列名
for i in range(0,250):
# print("第%d条" %(i+1)) #输出语句,用来测试
data = datalist[i]
for j in range(0,8):
sheet.write(i+1,j,data[j]) #数据
book.save(savepath) #保存
完整代码如下:
# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup # 网页解析,获取数据
import re # 正则表达式,进行文字匹配`
import urllib.request, urllib.error # 制定URL,获取网页数据
import xlwt # 进行excel操作
findLink = re.compile(r'<a href="(.*?)">') # 创建正则表达式对象,标售规则 影片详情链接的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)
def main():
baseurl = "https://movie.douban.com/top250?start=" #要爬取的网页链接
# 1.爬取网页
datalist = getData(baseurl)
savepath = "豆瓣电影Top250.xls" #当前目录新建XLS,存储进去
# dbpath = "movie.db" #当前目录新建数据库,存储进去
# 3.保存数据
saveData(datalist,savepath) #2种存储方式可以只选择一种
# saveData2DB(datalist,dbpath)
# 爬取网页
def getData(baseurl):
datalist = [] #用来存储爬取的网页信息
for i in range(0, 10): # 调用获取页面信息的函数,10次
url = baseurl + str(i * 25)
html = askURL(url) # 保存获取到的网页源码
# 2.逐一解析数据
soup = BeautifulSoup(html, "html.parser")
for item in soup.find_all('div', class_="item"): # 查找符合要求的字符串
data = [] # 保存一部电影所有信息
item = str(item)
link = re.findall(findLink, item)[0] # 通过正则表达式查找
data.append(link)
imgSrc = re.findall(findImgSrc, item)[0]
data.append(imgSrc)
titles = re.findall(findTitle, item)
if (len(titles) == 2):
ctitle = titles[0]
data.append(ctitle)
otitle = titles[1].replace("/", "") #消除转义字符
data.append(otitle)
else:
data.append(titles[0])
data.append(' ')
rating = re.findall(findRating, item)[0]
data.append(rating)
judgeNum = re.findall(findJudge, item)[0]
data.append(judgeNum)
inq = re.findall(findInq, item)
if len(inq) != 0:
inq = inq[0].replace("。", "")
data.append(inq)
else:
data.append(" ")
bd = re.findall(findBd, item)[0]
bd = re.sub('<br(\s+)?/>(\s+)?', "", bd)
bd = re.sub('/', "", bd)
data.append(bd.strip())
datalist.append(data)
return datalist
# 得到指定一个URL的网页内容
def askURL(url):
head = { # 模拟浏览器头部信息,向豆瓣服务器发送消息
"User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122 Safari / 537.36"
}
# 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)
request = urllib.request.Request(url, headers=head)
html = ""
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8")
except urllib.error.URLError as e:
if hasattr(e, "code"):
print(e.code)
if hasattr(e, "reason"):
print(e.reason)
return html
# 保存数据到表格
def saveData(datalist,savepath):
print("save.......")
book = xlwt.Workbook(encoding="utf-8",style_compression=0) #创建workbook对象
sheet = book.add_sheet('豆瓣电影Top250', cell_overwrite_ok=True) #创建工作表
col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
for i in range(0,8):
sheet.write(0,i,col[i]) #列名
for i in range(0,250):
# print("第%d条" %(i+1)) #输出语句,用来测试
data = datalist[i]
for j in range(0,8):
sheet.write(i+1,j,data[j]) #数据
book.save(savepath) #保存
if __name__ == "__main__": # 当程序执行时
# 调用函数
main()
# init_db("movietest.db")
print("爬取完毕!")
实验结果截图如下:
这篇关于实验四 python综合 实验报告的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!