支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
1 数学部分
1.1 二维空间
2 算法部分
clc; clear; load A_fear fearVec; load F_happiness hapVec; load N_neutral neutralVec; load T_sadness sadnessVec; load W_anger angerVec; sampleang=angerVec'; samplehap=hapVec'; sampleneu=neutralVec'; samplesad=sadnessVec'; samplefear=fearVec'; train(1:30,:)=sampleang(1:30,:); %每类三十个样本作为训练样本 test(1:20,:)=sampleang(31:50,:);%每类二十个样本作为测试样本 train(31:60,:)=samplehap(1:30,:); test(21:40,:)=samplehap(31:50,:);% train(61:90,:)=sampleneu(1:30,:); test(41:60,:)=sampleneu(31:50,:);% train(91:120,:)=samplesad(1:30,:); test(61:80,:)=samplesad(31:50,:);% train(121:150,:)=samplefear(1:30,:); function rate=svmclassfiction(samples,test) %构造五种情感分类器 train1=samples(1:60,:);%用来构造生气-高兴分类模型训练样本 train2=[samples(1:30,:);samples(61:90,:)];%用来构造生气-中性分类模型训练样本 train3=[samples(1:30,:);samples(91:120,:)];%用来构造生气-悲伤分类模型训练样本 train4=[samples(1:30,:);samples(121:150,:)];%用来构造生气-害怕分类模型训练样本 train5=[samples(31:60,:);samples(61:90,:)];%用来构造高兴-中性分类模型训练样本 train6=[samples(31:60,:);samples(91:120,:)];%用来构造高兴-悲伤分类模型训练样本 train7=[samples(31:60,:);samples(121:150,:)];%用来构造高兴-害怕分类模型训练样本 train8=[samples(61:90,:);samples(91:120,:)];%用来构造中性-悲伤分类模型训练样本 train9=[samples(61:90,:);samples(121:150,:)];%用来构造中性-害怕分类模型训练样本 train10=[samples(91:120,:);samples(121:150,:)];%用来构造悲伤-害怕分类模型训练样本 for i=1:30 %正类样本标记 trainlabel(i)=1; end for i=30:60 %负类样本标记 trainlabel(i)=-1; end trainlabel=trainlabel'; svmStruct(1)= svmtrain(train1,trainlabel); %构造两类SVM分类模型 svmStruct(2)= svmtrain(train2,trainlabel); svmStruct(3)= svmtrain(train3,trainlabel); svmStruct(4)= svmtrain(train4,trainlabel); svmStruct(5)= svmtrain(train5,trainlabel); svmStruct(6)= svmtrain(train6,trainlabel); svmStruct(7)= svmtrain(train7,trainlabel); svmStruct(8)= svmtrain(train8,trainlabel); svmStruct(9)= svmtrain(train9,trainlabel); svmStruct(10)= svmtrain(train10,trainlabel); sumang=0; %生气情感正确识别个数 sumhap=0; %高兴情感正确识别个数 sumneu=0; %中性情感正确识别个数 sumsad=0; %悲伤情感正确识别个数 sumfea=0; %害怕情感正确识别个数 for i=1:100 for k=1:5 votes(k)=0; %多个SVM分类器将待测样本规定为某一类别个数 end for j=1:10 C(j) = svmclassify(svmStruct(j),test(i,:)); end if(C(1)==1) %第一个判决器结果 votes(1)=votes(1)+1; %生气情感获得票数 elseif(C(1)==-1) votes(2)=votes(2)+1; %高兴情感获得票数 end if(C(2)==1) %第二个判决器结果 votes(1)=votes(1)+1; %生气情感获得票数 elseif(C(2)==-1) votes(3)=votes(3)+1; %中性情感获得票数 end if(C(3)==1) %第三个判决器结果 votes(1)=votes(1)+1; %生气情感获得票数 elseif(C(3)==-1) votes(4)=votes(4)+1; %悲伤情感获得票数 end if(C(4)==1) %第四个判决器结果 votes(1)=votes(1)+1; %生气情感获得票数 elseif(C(4)==-1) votes(5)=votes(5)+1; %害怕情感获得票数 end
版本:2014a
完整代码或代写加1564658423