博客班级 | 班级连接 |
---|---|
作业目标 | 实现决策树算法及应用 |
作业要求 | 作业连接 |
学号 | 3180701138 |
姓名 | 彭涛 |
一、实验目的
理解决策树算法原理,掌握决策树算法框架;
理解决策树学习算法的特征选择、树的生成和树的剪枝;
能根据不同的数据类型,选择不同的决策树算法;
针对特定应用场景及数据,能应用决策树算法解决实际问题。
二、实验内容
设计算法实现熵、经验条件熵、信息增益等方法。
实现ID3算法。
熟悉sklearn库中的决策树算法;
针对iris数据集,应用sklearn的决策树算法进行类别预测。
针对iris数据集,利用自编决策树算法进行类别预测。
三、实验报告要求
对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论ID3、C4.5算法的应用场景;
查询文献,分析决策树剪枝策略。
四、实验过程
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math from math import log import pprint
例题5.1 def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'], ] labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 返回数据集和每个维度的名称 return datasets, labels datasets, labels = create_data() train_data = pd.DataFrame(datasets, columns=labels) train_data # 熵 def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent
# def entropy(y): # """ # Entropy of a label sequence # """ # hist = np.bincount(y) # ps = hist / np.sum(hist) # return -np.sum([p * np.log2(p) for p in ps if p > 0]) # 经验条件熵 def cond_ent(datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum( [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()]) return cond_ent
# 信息增益 def info_gain(ent, cond_ent): return ent - cond_ent
def info_gain_train(datasets): count = len(datasets[0]) - 1 ent = calc_ent(datasets) # ent = entropy(datasets) best_feature = [] for c in range(count): c_info_gain = info_gain(ent, cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]]) info_gain_train(np.array(datasets))
实验截图:
例题5.3 # 定义节点类 二叉树 class Node: def __init__(self, root=True, label=None, feature_name=None, feature=None): self.root = root self.label = label self.feature_name = feature_name self.feature = feature self.tree = {} self.result = { 'label:': self.label, 'feature': self.feature, 'tree': self.tree } def __repr__(self): return '{}'.format(self.result) def add_node(self, val, node): self.tree[val] = node def predict(self, features): if self.root is True: return self.label return self.tree[features[self.feature]].predict(features) class DTree: def __init__(self, epsilon=0.1): self.epsilon = epsilon self._tree = {}
# 熵 @staticmethod def calc_ent(datasets): data_length = len(datasets) label_count = {} for i in range(data_length): label = datasets[i][-1] if label not in label_count: label_count[label] = 0 label_count[label] += 1 ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()]) return ent
# 经验条件熵 def cond_ent(self, datasets, axis=0): data_length = len(datasets) feature_sets = {} for i in range(data_length): feature = datasets[i][axis] if feature not in feature_sets: feature_sets[feature] = [] feature_sets[feature].append(datasets[i]) cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()]) return cond_ent
# 信息增益 @staticmethod def info_gain(ent, cond_ent): return ent - cond_ent def info_gain_train(self, datasets): count = len(datasets[0]) - 1 ent = self.calc_ent(datasets) best_feature = [] for c in range(count): c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c)) best_feature.append((c, c_info_gain)) # 比较大小 best_ = max(best_feature, key=lambda x: x[-1]) return best_ def train(self, train_data): """ input:数据集D(DataFrame格式),特征集A,阈值eta output:决策树T """ _, y_train, features = train_data.iloc[:, : -1], train_data.iloc[:, -1], train_data.columns[: -1] # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T if len(y_train.value_counts()) == 1: return Node(root=True, label=y_train.iloc[0]) # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T if len(features) == 0: return Node( root=True, label=y_train.value_counts().sort_values( ascending=False).index[0]) # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征 max_feature, max_info_gain = self.info_gain_train(np.array(train_data)) max_feature_name = features[max_feature] # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返 if max_info_gain < self.epsilon: return Node( root=True, label=y_train.value_counts().sort_values( ascending=False).index[0]) # 5,构建Ag子集 node_tree = Node( root=False, feature_name=max_feature_name, feature=max_feature) feature_list = train_data[max_feature_name].value_counts().index for f in feature_list: sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1) # 6, 递归生成树 sub_tree = self.train(sub_train_df) node_tree.add_node(f, sub_tree) # pprint.pprint(node_tree.tree) return node_tree def fit(self, train_data): self._tree = self.train(train_data) return self._tree def predict(self, X_test): return self._tree.predict(X_test) datasets, labels = create_data() data_df = pd.DataFrame(datasets, columns=labels) dt = DTree() tree = dt.fit(data_df) tree dt.predict(['老年', '否', '否', '一般'])
实验截图
scikit-learn实例 # data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, [0, 1, -1]]) # print(data) return data[:, :2], data[:, -1] X, y = create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz import graphviz clf = DecisionTreeClassifier() clf.fit(X_train, y_train,) clf.score(X_test, y_test) tree_pic = export_graphviz(clf, out_file="mytree.pdf") with open('mytree.pdf') as f: dot_graph = f.read() graphviz.Source(dot_graph)
实验截图
from sklearn.tree import DecisionTreeClassifier from sklearn import preprocessing import numpy as np import pandas as pd from sklearn import tree import graphviz features = ["年龄", "有工作", "有自己的房子", "信贷情况"] X_train = pd.DataFrame([ ["青年", "否", "否", "一般"], ["青年", "否", "否", "好"], ["青年", "是", "否", "好"], ["青年", "是", "是", "一般"], ["青年", "否", "否", "一般"], ["中年", "否", "否", "一般"], ["中年", "否", "否", "好"], ["中年", "是", "是", "好"], ["中年", "否", "是", "非常好"], ["中年", "否", "是", "非常好"], ["老年", "否", "是", "非常好"], ["老年", "否", "是", "好"], ["老年", "是", "否", "好"], ["老年", "是", "否", "非常好"], ["老年", "否", "否", "一般"] ]) y_train = pd.DataFrame(["否", "否", "是", "是", "否", "否", "否", "是", "是", "是", "是", "是", "是", "是", "否"]) # 数据预处理 le_x = preprocessing.LabelEncoder() le_x.fit(np.unique(X_train)) X_train = X_train.apply(le_x.transform) le_y = preprocessing.LabelEncoder() le_y.fit(np.unique(y_train)) y_train = y_train.apply(le_y.transform) # 调用sklearn.DT建立训练模型 model_tree = DecisionTreeClassifier() model_tree.fit(X_train, y_train) # 可视化 dot_data = tree.export_graphviz(model_tree, out_file=None, feature_names=features, class_names=[str(k) for k in np.unique(y_train)], filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph
实验截图
import numpy as np class LeastSqRTree: def __init__(self, train_X, y, epsilon): # 训练集特征值 self.x = train_X # 类别 self.y = y # 特征总数 self.feature_count = train_X.shape[1] # 损失阈值 self.epsilon = epsilon # 回归树 self.tree = None def _fit(self, x, y, feature_count, epsilon): # 选择最优切分点变量j与切分点s (j, s, minval, c1, c2) = self._divide(x, y, feature_count) # 初始化树 tree = {"feature": j, "value": x[s, j], "left": None, "right": None} if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1: tree["left"] = c1 else: tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])], y[np.where(x[:, j] <= x[s, j])], self.feature_count, self.epsilon) if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1: tree["right"] = c2 else: tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])], y[np.where(x[:, j] > x[s, j])], self.feature_count, self.epsilon) return tree def fit(self): self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon) @staticmethod def _divide(x, y, feature_count): # 初始化损失误差 cost = np.zeros((feature_count, len(x))) # 公式5.21 for i in range(feature_count): for k in range(len(x)): # k行i列的特征值 value = x[k, i] y1 = y[np.where(x[:, i] <= value)] c1 = np.mean(y1) y2 = y[np.where(x[:, i] > value)] c2 = np.mean(y2) y1[:] = y1[:] - c1 y2[:] = y2[:] - c2 cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2) # 选取最优损失误差点 cost_index = np.where(cost == np.min(cost)) # 选取第几个特征值 j = cost_index[0][0] # 选取特征值的切分点 s = cost_index[1][0] # 求两个区域的均值c1,c2 c1 = np.mean(y[np.where(x[:, j] <= x[s, j])]) c2 = np.mean(y[np.where(x[:, j] > x[s, j])]) return j, s, cost[cost_index], c1, c2 train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00]) model_tree = LeastSqRTree(train_X, y, .2) model_tree.fit() model_tree.tree
实验截图
决策树剪枝策略
(1)在决策树生成过程中,对每一个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶子结点。
(2)先从训练集生成一棵完整的决策树,然后自底向上地对非叶子结点进行考察,若将该结点对应地子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
实验小结
本次实验是关于决策树的算法的相关实验,使我进一步掌握了决策树算法的原理,对于sklearn第三库自带的决策树算法我也在本次实验中有了基本的了解并且学会了如何使用,其实决策树本质上是从训练数据集中归纳出一组分类规则。在判断一个决策树的性能好坏时,应该关注特征属性的本质和分类性能。决策树虽然也是一个良好的分类算法,但是它也面对一下问题:比如多度拟合,当数据中有噪声或训练样例的数量太少以至于不能产生目标函数的有代表性的采样时。