几个关键点
分区策略
分区原因
生产者往哪个分区写
可靠性保证(发送的环节)
ack机制&何时发送ack&同步几个发送ack
两种副本同步策略比较(全同步&半同步)
ISR待同步副本集合(小弟骨干集合)
acks的三种配置化和各自的问题
一致性保证(故障细节处理)
leader故障后带来的两个问题
LEO和HW的引入
Exactly Once语义和幂等性的实现
此处是先保证发数据这个环节的可靠性,也就是保证producer的数据可以可靠的发送到指定topic下的partition。
接收数据的单位是partition,则其每个partition收到数据后,需要像producer发送ack确认收到,producer收到ack后,就会开始下一轮的发送。
问题来了:partition有多个副本,数据先写到leader,leader收到数据后还要再向各小弟follower同步数据,这样当自己挂的时候可以通过选主策略重新找到一个老大。
那么什么时候发送ack?要确保所有副本都同步到数据吗?
答:确保有 follower与leader同步完成,leade再发送ack,这样才能保证 leader挂掉之后,能在 follower中选举出新的leader。
多少个follower同步完成可以发ack?10个小弟的话要全部等同步完再发吗?会不会太慢了
答:现有方案:
a. 半数以上的 follower同步完成,即可发送ack
b. 全部的 Follower同步完成,才可以发送ack
综上,ack的发送要等partition的的副本也收到后再发,那么leader与follower之间的副本数据同步就有了不同的方案。全同步和半同步。
Kafka 选择了第二种方案,原因如下:
同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1
个副本,而 Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。
采用第二种方案全同步后的问题:
一个leader有10个小弟,但其中有一个小弟就是因为各种原因迟迟不能同步,那么leader就得一直等, 直到这个小弟同步完成才能发送ack。这个问题怎么解决?
Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集 合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。
也就是说比如leader有10个小弟,他不是等所有小弟同步完消息,而是有一个叫ISR的集合,里面会加入一部分小弟,比如5个,他是等这个集合里的所有小弟同步完发ack。 后面如果leader出了事,选举新老大也是从这个集合里选。
这么一看,ISR妥妥的都是储备干部啊,那怎么才能加入这个集合呢?
原来的标准有2个,一个是小弟们保存的数据条数,看谁的offset最多,那如果出事选他们肯定相对丢的数据更少。另一个是小弟们的响应时间,响应时间超过某个阈值的就移除这个队伍。
最新的版本取消了条数的判断。因为这会导致很多follwer频繁的进出ISR,且涉及到zk的写数据。
上面讲leader要等ISR中的所有小弟都同步完才返回ack,但是吧,有些数据确实是不太重要,我们感觉这种数据丢了也没关系,好像也没必要等ISR中的所有小弟都接收完成。
基于这种情况,Kafka就给我们提供了可配置化的操作,提供了三种可靠性级别,让用户自己去权衡可靠性和延迟进行配置;
acks:
0
:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还
没有写入磁盘就已经返回,当 broker 故障时有可能 丢失数据;
1
:producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower同步成功之前 leader 故障,那么将会 丢失数据;
-1(all)
:producer 等待 broker 的 ack,partition 的 leader 和 follower 全部落盘成功后才返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会造成数据重复。
acks = 1 数据丢失案例
acks = -1 数据重复案例
参数大白话总结:
0就是producer直接不等ack; 1就是只要leader落盘成功就发ack; -1就是leader等所有小弟同步完再发ack。
1出问题的情况就是会数据丢失
-1出问题的情况(退化为配置1,也就是ISR中只剩leader):若ISR数量为3,一个leader2个follwer,结果两个follower太慢都被移出了ISR,导致里面只剩一个leader,那这种情况就退化成了参数为1的情况了。也就是只有leader收到了数据就立刻发送了ack。
-1的出问题另一种情况是重复数据问题:小弟都同步完成后,leader发ack之前挂了,然后producer又重发了,导致重复。
有这样几个问题:
当leader挂掉以后,f1有10条,f2有9条,f3有8条,那么假设leader选的f3,因为f3最多到第8条,所以消费者拿第9个偏移量就拿不到了,这种情况怎么办?
答:引入高水位HW,只暴露高水位以前的偏移量
不同follwer的条数不一样,选f3以后,重发了9,但9同步到f1就变成了11,这不就重复了吗?
答:选举后阉割掉或截取掉所有高水位后面的偏移量。
那么这里引入了两个概念:HW高水位和LEO最后偏移量
大白话总结
HW是暴露给消费者的最大偏移量。因为HW是木桶里的短板。
如下图
leader 故障
leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader同步数据。
follower 故障
follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘
记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。
等该 follower 的 LEO 大于等于该 Partition 的 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。
注意: 这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
在 0.11 版本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局 去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。 0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语 义,就构成了 Kafka 的 Exactly Once 语义。 即:At Least Once + 幂等性 = Exactly Once
At Least Once + 幂等性 = Exactly Once
要启用幂等性,只需要将 Producer 的参数中 enable.idompotence 设置为 true 即可 !!
Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在 初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而 Broker 端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker 只 会持久化一条。 但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨 分区跨会话的 Exactly Once。
同一次会话:session,也就是说producer启动起来后没有挂掉的情况下,然后同一分区内,都可以保证幂等性。
精确一次语义的大白话总结
ack设置-1保证至少一次,这样起码不会丢,然后重复的问题靠幂等性来解决。而这里kafka的幂等性是选择的主键是三位一体的<生产者id,分区id,消息id>,这三个键来做主键。 不过Kafka挂了后分配的Pid会改变,所以不能保证跨session。不同分区主键不同,所以也不能跨分区。