名称 | 内容 |
---|---|
博客班级 | 班级链接 |
作业要求 | 作业链接 |
学号 | 3180701111 |
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
1.实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
5.讨论朴素贝叶斯算法的优缺点。
实验代码及截图
1.
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter import math
# data def create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] data = np.array(df.iloc[:100, :]) # print(data) return data[:,:-1], data[:,-1]
X, y = create_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_test[0], y_test[0]
class NaiveBayes: def __init__(self): self.model = None # 数学期望 @staticmethod def mean(X): return sum(X) / float(len(X)) # 标准差(方差) def stdev(self, X): avg = self.mean(X) return math.sqrt(sum([pow(x-avg, 2) for x in X]) / float(len(X))) # 概率密度函数 def gaussian_probability(self, x, mean, stdev): exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2)))) return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent # 处理X_train def summarize(self, train_data): summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)] return summaries # 分类别求出数学期望和标准差 def fit(self, X, y): labels = list(set(y)) data = {label:[] for label in labels} for f, label in zip(X, y): data[label].append(f) self.model = {label: self.summarize(value) for label, value in data.items()} return 'gaussianNB train done!' # 计算概率 def calculate_probabilities(self, input_data): # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]} # input_data:[1.1, 2.2] probabilities = {} for label, value in self.model.items(): probabilities[label] = 1 for i in range(len(value)): mean, stdev = value[i] probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev) return probabilities # 类别 def predict(self, X_test): # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26} label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0] return label def score(self, X_test, y_test): right = 0 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right += 1 return right / float(len(X_test))
model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.4, 3.2, 1.3, 0.2]))
model.score(X_test, y_test)
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB() clf.fit(X_train, y_train)
clf.score(X_test, y_test)
clf.predict([[4.4, 3.2, 1.3, 0.2]])
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
需要一个比较容易解释,而且不同维度之间相关性较小的模型的时候。
可以高效处理高维数据,虽然结果可能不尽如人意。
优点