1 调制原理
常规双边带调幅又叫标准调幅,简称调幅(AM)。假设调制信号 m(t) 的平均值为 0,将其加上一个直流分量 A0 后与载波相乘就可以得到AM信号。
调制模型如下图所示:
2 解调原理
对于AM信号来说,使用两种解调方式:相干解调和非相干解调均可。在通常情况下,因为其包络与调制信号 m(t)的形状、波形起伏完全一致。故可以使用实现较为简便的包络检波法来恢复原信号。
包络检波器如下图所示:
其中,利用的原理分别是二极管的单向导通性、电容的高频旁路特性和电容的隔直特性。
t0=0.1; fs=12000; %采样频率 fc=1000;%载波频率 Vm=2;%载波振幅 A0=1;%直流分量 n=-t0/2:1/fs:t0/2; x=cos(150*pi*n);%调制信号 y2=Vm*cos(2*pi*fc*n);%载波信号 N=length(x); Y2=fft(y2); figure(1); function [b,a] = u_buttap(N,Omegac); % Unnormalized Butterworth Analog Lowpass Filter Prototype % -------------------------------------------------------- % [b,a] = u_buttap(N,Omegac); % b = numerator polynomial coefficients of Ha(s) % a = denominator polynomial coefficients of Ha(s) % N = Order of the Butterworth Filter % Omegac = Cutoff frequency in radians/sec % [z,p,k] = buttap(N); p = p*Omegac; k = k*Omegac^N; B = real(poly(z)); b0 = k; b = k*B; function [b,a] = imp_invr(c,d,T) % Impulse Invariance Transformation from Analog to Digital Filter % --------------------------------------------------------------- % [b,a] = imp_invr(c,d,T) % b = Numerator polynomial in z^(-1) of the digital filter % a = Denominator polynomial in z^(-1) of the digital filter % c = Numerator polynomial in s of the analog filter % d = Denominator polynomial in s of the analog filter % T = Sampling (transformation) parameter % [R,p,k] = residue(c,d); p = exp(p*T); % 注: wp(或Wp)为通带截止频率 ws(或Ws)为阻带截止频率 Rp为通带衰减 As为阻带衰减 %butterworth低通滤波器原型设计函数 要求Ws>Wp>0 As>Rp>0 function [b,a]=afd_butt(Wp,Ws,Rp,As) N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(Wp/Ws))); %上条语句为求滤波器阶数 N为整数 %ceil 朝正无穷大方向取整
版本:2014a
完整代码或代写加1564658423