数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(Pulse Code Modulation),即脉冲编码调制。
脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。抽样速率采用8Kbit/s。
量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
编码,就是用一组二进制码组来表示每一个有固定电平的量化值。然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PCM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码后转换成二进制码。对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有2^8=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大。
均匀量化的小信号的信噪比小。
非均匀量化: 由于一些信源信号, 如语音信号, 小幅度信号发生的概率大于大幅度信号的概率, 采用非均匀量化(即小幅度信号的量化步长小于大幅度信号的的量化步长) 效果更好好 (表现在语音信号上, 可以使信号具有足够的信噪比)。
非均匀量化特性通常是把信号通过一个非线性的设备, 小信号幅度进行放大, 大信号幅度进行压缩, 再通过均匀量化实现。
function varargout = PCM(varargin) % PCM M-file for PCM.fig % PCM was designed in order to show how PCM works % % To simplify the undesrtanding of this method, the program first takes % a sine wave. Then you can choose a sampling scheme, and you can see % the output of the sampler. You can choose one out of three sampling % methods. % If you choose natural sampling; then you will have the chance to modify % the sampling window, and see the effects of this change in the output of % the sampler. % % Once you got the sampled signal you can quantize it by a method that is % known as two rules and an alorithm. % The option Squeezing and Stretching shows the best G(x) tha minimizes % the MSE. You can better understand this using the book % Telecommunications Demystified written by Carl Nassar. You can find % information about this on Chapter four of that book. % You can edit the bit's number and the number of iterations of the % algorithm. The bigger the number of bits, the smaller the MSE. % The picture shows the signal after quantization, the first iteration % in the quantization process and the output of the quantizer % % Then, by pressing the Bit Stream button you will see the PCM output % of the signal that you have selected in the input area. % % Everytime you change something, you must push the button that is % related with the change you have just made. For example if don't % want to work anymore with the sine wave and you choose the random % signal, then you have to push the plot button in order to see the % plot of the random signal, and if you change of sampling method you % have to push the sampling button, when you changhe the sampling % window. So if you change the number of codewords or the number of % the iterations you will have to press the quantize button again. % Edit the above text to modify the response to help PCM % Last Modified by GUIDE v2.5 14-Mar-2021 12:32:35 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @PCM_OpeningFcn, ... 'gui_OutputFcn', @PCM_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before PCM is made visible. function PCM_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to PCM (see VARARGIN) % Choose default command line output for PCM handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes PCM wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = PCM_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if (get(handles.radiobutton2,'Value') == get(handles.radiobutton2,'Max')) % Verifies if Sine wave was selected t=linspace(0,1,60); % Creates the time variable from 0 to 1 with a length of 60 or 60 points y=sin(2*pi*t); % Creates a sine wave of frequency 1 with the t vector axes(handles.axesanalog) % Select the proper axes plot(t,y); xlabel('Time'); ylabel('Amplitude'); grid on; elseif (get(handles.radiobutton3,'Value') == get(handles.radiobutton3,'Max')) % Verifies if Random signal was selected t=linspace(0,60,60); % Creates the time variable from 0 to 60 with a length of 60 or 60 points y=rand([1 60]); % Creates a random signal of length 60 or with 60 points axes(handles.axesanalog) % Select the proper axes plot(t,y); xlabel('Time'); ylabel('Amplitude'); grid on; end handles.amp=y; % Saves the input signal y in the amp variable at the handles structure handles.time=t; % Saves the input signal t in the time variable at the handles structure guidata(gcbo,handles); % Save the changes made to the handles structure % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close; % Close the application % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if (get(handles.radiobutton4,'Value') == get(handles.radiobutton4,'Max')) t=handles.time; % recover the saved variable t from the handles structure y=handles.amp; % recover the saved variable y from the handles structure p=ones(1, length(t)); % creates a vector containing only ones outideal=p.*y; % Multiplies the two vectors to get the output of an ideal sampler axes(handles.axessampled) % Select the proper axes stem(t,outideal,'ro'); xlabel('Time'); ylabel('Amplitude'); grid on; handles.signal=outideal; guidata(gcbo,handles); elseif (get(handles.radiobutton5,'Value') == get(handles.radiobutton5,'Max')) t=handles.time; % recover the saved variable t from the handles structure y=handles.amp; % recover the saved variable y from the handles structure p=ones(1, length(t)); % creates a vector containing only ones outhold=p.*y; % Multiplies the two vectors to get the output of an ideal sampler axes(handles.axessampled) % Select the proper axes stairs(t,outhold,'r'); %Plot the signal in a stairs shape making it looks like a zero order hold sampler xlabel('Time'); ylabel('Amplitude'); grid on; handles.signal=outhold; guidata(gcbo,handles); elseif (get(handles.radiobutton6,'Value') == get(handles.radiobutton6,'Max')) t=handles.time; % recover the saved variable t from the handles structure y=handles.amp; % recover the saved variable y from the handles structure test1=eval(get(handles.edit1,'String')); % Evals the value that is contained in the Edit 1 if isnan(test1) % Test if it is a number or not. If not it displays an error message errordlg('You must enter a numeric value','Bad Input','modal') end lenp=length(t)/length(test1); %Calculates the length of the vector so it can make it a periodic signal with the %right size so it can work properly p=ones(1, lenp); % Creates a vector of only ones of lenght lenp per=test1'*p; % Creates a matrix, containing lenp times the vector test1 per=per(:); % Concatenates the columns of the matrix so it becomes a vector outnormal=per'.*y; % Multiplies the two vectors to get the output of a normal sampler axes(handles.axessampled) % Select the proper axes plot(t,outnormal,'r'); xlabel('Time'); ylabel('Amplitude'); grid on; handles.signal=outnormal; guidata(gcbo,handles); end function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
版本:2014a