DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
目录
GD算法的简介
GD/SGD算法的代码实现
1、Matlab编程实现
GD算法的改进算法
GD算法中的超参数
GD算法,是求解非线性无约束优化问题的基本方法,最小化损失函数的一种常用的一阶优化方法。如图所示,找出最陡峭的方向作为下山的方向。
1、如何求梯度?
沿着梯度方向,函数值下降最快。
2、二元曲面
具有两个输入权重的线性神经元的误差曲面,Error surface of a linear neuron with two input weights
3、GD算法容易陷入局部最小值
%% 最速下降法图示 % 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。 syms x;f=x^2; step=0.1;x=2;k=0; %设置步长,初始值,迭代记录数 f_change=x^2; %初始化差值 f_current=x^2; %计算当前函数值 ezplot(@(x,f)f-x.^2) %画出函数图像 axis([-2,2,-0.2,3]) %固定坐标轴 hold on while f_change>0.000000001 %设置条件,两次计算的值之差小于某个数,跳出循环 x=x-step*2*x; %-2*x为梯度反方向,step为步长,!最速下降法! f_change = f_current - x^2; %计算两次函数值之差 f_current = x^2 ; %重新计算当前的函数值 plot(x,f_current,'ro','markersize',7) %标记当前的位置 drawnow;pause(0.2); k=k+1; end hold off fprintf('在迭代%d次后找到函数最小值为%e,对应的x值为%e\n',k,x^2,x)
2、基于python实现SGD算法
class SGD: def __init__(self, lr=0.01): self.lr = lr #学习率,实例变量 #update()方法,在SGD中会被反复调用 def update(self, params, grads): for key in params.keys(): params[key] -= self.lr * grads[key] #参数params、grads依旧是字典型变量,按params['W1']、grads['W1']的形式,分别保存了权重参数和它们的梯度。 '伪代码:神经网络的参数的更新' network = TwoLayerNet(...) optimizer = SGD() for i in range(10000): ... x_batch, t_batch = get_mini_batch(...) # mini-batch grads = network.gradient(x_batch, t_batch) params = network.params optimiz
1、SGD算法
(1)、mini-batch
如果不是每拿到一个样本即更改梯度,而是若干个样本的平均梯度作为更新方向,则是mini-batch梯度下降算法。
(1)、SGD与学习率、Rate、Loss
1、学习率
(1)、固定学习率实验的C代码
(2)、回溯线性搜索(Backing Line Search)
(3)、二次插值线性搜索:回溯线性搜索的思考——插值法,二次插值法求极值